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Abstract 
 
Directionally solidified sample of Fe-Fe3C eutectic alloy were produced under an argon atmosphere in a vacuum Bridgman-type furnace to 
study the eutectic growth with v = 167 μm/s pulling rate and constant temperature gradient G = 33.5 K/mm. Since how the growth texture 
of eutectic cementite is related to its growth morphology remains unclear, the current study aims to examine this relationship. The tech-
nique such as X-ray diffraction, have been used for the crystallographic analysis of carbide particles in white cast irons. 
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1. Introduction 
 

Eutectic alloys can form a variety of different two-phase mi-
crostructures during the liquid/solid phase transformation. Be-
cause of their superior mechanical properties associated with  
a fine-scale composite microstructure, eutectic alloys have attract-
ed much attention in the realm of materials science. In addition, 
the use of eutectic materials as in situ composites is of great inter-
est to metallurgists. 

Ledeburite consists of eutectic cells in which many austenite 
rods, along [001], are embedded into cementite platters (or 
blocks) based on (001) plane. The eutectic cells show a lamellar 
or plate shape; their length and width are far greater than their 
thickness. Therefore, under microscope, only the transverse sec-
tions of the austenite rods are observed. After etching, they show 
as dark round spots on a white cementite [1].  

Orthorhombic cementite, Fe3C, has many more Bragg peaks 
of much smaller intensity than cubic ferrite and is, therefore, 
difficult to study by X-ray diffraction. Satisfactory were obtained 
results using a specimen containing 4.37 wt.% carbon, which is 
close to the eutectic composition (4.3 wt.%). The total cementite 

content amounts to 65.5 vol.%, 9% of which are needles of prima-
ry cementite with random crystallographic orientation.  
A fraction of 81% of the cementite consists of lamellar eutectic 
and secondary cementite and is preferentially oriented with its b-
axis parallel to the direction of heat flow during eutectic solidifi-
cation [2]. This direction is perpendicular to the surface, which we 
investigated by X-ray diffraction. The remaining cementite, and 
all of the ferrite, is contained in the heterogeneous pearlite phase. 
The pearlite particles consist of alternating ferrite and cementite 
lamellae with a periodicity on the submicrometer scale. The la-
mellae have more or less well defined orientation relationships 
[3]. For the theoretical considerations were assumed that they are 
oriented perpendicular to the [110] and [001] directions of ferrite 
and cementite, respectively [4]. 

At room temperature, the lattice parameters of cementite 
amount to a = 0.45165 nm; b = 0.50837 nm and c = 0.67475 nm 
[5]. Cementite is ferromagnetic with the direction of magnetiza-
tion parallel to the c-axis [6]. 

White cast iron consists of the phases ferrite and cementite. 
On cooling, strong thermoelastic stresses Δσij occur which-
because of equilibrium conditions-have different signs in the two 
phases. According to the sin2ψ - law of conventional X-ray stress 
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Research of area B3 (Fig. 6) Catalog of reflectoins list [5] 
 Fe3C Feα 

Peak 2θ dhkl I/Imax dhkl hkl I/Imax dhkl hkl I/Imax 
1 46.41 0.22701 62.98 0.225825 200 24.0 ---   
2 52.51 0.20220 100.00 0.203014 022 48.0 0.20268 110 100 
3 56.81 0.18804 6.19 0.187664 

0.187188 
202 
113 

1.1 
30 

---   

4 63.86 0.16913 12.96 0.168442 
0.168822 
0.168987 

023 
220 
004 

13.0 
0.2 
4.8 

---   

5 76.81 0.14399 2.46 0.143574 132 0.5 0.14332 200 19 
6 77.16 0.14344 3.30 0.143574 132 0.5 0.14332 200 19 

Research of area C (Fig. 7) Catalog of reflectoins list [5] 
    Fe3C  Feα 

Peak 2θ dhkl I/Imax dhkl hkl I/Imax dhkl hkl I/Imax 
1 46.36 0.22725 12.34 0.258825 200 24.0 ---   
2 52.41 0.20256 100.00 0.203014 022 48.6 0.20268 110 100 
3 56.66 0.18849 0.98 0.187664 

0.187188 
202 
113 

1.1 
30.0 

---   

4 63.76 0.16936 4.20 0.168442 
0.168822 
0.168687 

023 
220 
004 

13.0 
0.2 
4.8 

---   

5 76.96 0.14375 2.67 0.143574 132 0.5 0.11332 200 19 
 
 

Table 2 shows the occurrence of X-ray diffraction peaks, from 
the Figure 3÷7 
 
Table 2.  
Data set of diffractometer trace of Figure 3÷7 
peak hkl phase A B1 B2 B3 C 

1 (112) 
(021) 

cementite 
cementite 

 + 
+ 

   

2 (200) cementite + + + + + 
3 (210) cementite  +    
4 (022) 

(110) 
cementite 

Feα 
+ 
+ 

+ 
+ 

+ 
+ 

+ 
+ 

+ 
+ 

5 (211) cementite +     
6 (212) cementite +     
7 (113) 

(202) 
cementite 
cementite 

 + 
+ 

+ 
+ 

+ 
+ 

+ 
+ 

8 (023) 
 (220) 
 (004) 

cementite 
cementite 
cementite 

+ 
+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 

9 (200) 
(132) 

Feα 
cementite 

+ 
+ 

+ 
+ 

+ 
+ 

+ 
+ 

+ 
+ 

  
Tables 1 and 2 shows, that the in analyzed areas A, B and C 

different results of X-ray diffraction were obtained. This applies 
to the occurrence of the peaks and their intensity values. Peaks 1, 
3, 5 and 6 (Tab.2) were observed only in single cases: peaks 1 and 
3 in area B1, peaks 5 and 6 in area A. In contrast, only in area A 
there is no peak 7. In area B, depending on the direction and the 
way of the test (included sample), different results were obtained. 

The calculated values lattice parameter of cementite where 
listed in Table 3. For cases A, B and C: values in italics are calcu-
lated on the basis of indicators (hkl), other values were calculated 
based on the formulas of [11]. 

 

5. Summary 
 

The research the results of X-ray diffraction shows, that the 
impact on do not have the chemical composition or structure 
phase, that were same for the whole sample. 

When tested area B, the arrangement of the sample relative to 
the goniometer axis was parallel and perpendicular. They also 
sample included in the resin were tested. 
 
Table 3. 
Values of a, b, c lattice parameter of cementite 

Area a, nm b, nm c, nm 
[5] 0.45165 0.50837 0.67475 
[7] 0.5076 0.4514 0.6757 
[12] 0.48190 

0.50080 
0.64774 
0.67254 

0.42805 
0.44650 

[13]  0.5092 0.6741 0.4527 
[14] 0.45246 0.50884 0.67423 
A 0.45401 

0.45480 
 
0.51049 

0.67744 
0.67996 

B1 0.45310 
0.45369 

 
0.51596 

 
0.67556 

B2 0.45356 
0.4534 

 
0.50962 

0.677 
0.68090 

B3 0.45404 
0.45434 

 
0.50954 

0.67652 
0.68012 

C 0.45401 
0.45480 

 
0.52060 

0.67744 
0.67793 

 
The d-spacings of lattice planes depend on the size of the el-

ementary cell and determine the position of the peaks. For each B 
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variant other values of the parameters a, b and c were obtained. 
This may be the result of directional solidification of ledeburite. 
In Figure 2b) structure of texture can be seen. The intensity of 
each peak is caused by the crystallographic structure, the position 
of the atoms within the elementary cell and their thermal vibra-
tion. 

The line width and shape of the peaks may be derived from 
conditions of measuring and properties - like particle size - of the 
sample material. Rapid solidification may cause a deformation of 
the lattice plane [6, 7] which is indicated by different values of the 
lattice parameters (Tab. 3). Such deformation could also be the 
result of directional solidification 

The present study should be continued. 
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