PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanic, Half-Metallic and Thermoelectric Properties of the PdZrTiAl under pressure: A DFT study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The half-metallic, mechanical, and transport properties of the quaternary Heusler compound of PdZrTiAl is discussed under hydrostatic pressures in the range of –11.4 GPa to 18.4 GPa in the framework of the density functional theory (DFT) and Boltzmann quasi-classical theory using the generalization gradient approximation (GGA). By applying the stress, the band gap in the minor spin increases so that the lowest band is obtained 0.25 eV at the pressure of –11.4 GPa while the maximum gap is calculated 0.9 eV at the pressure of 18.4 GPa. In all positive and negative pressures, the PdZrTiAl composition exhibits a half-metallic behavior 100% spin polarization at the Fermi level. It is also found that applying stress increases the Seebeck coefficient in both spin directions. In the minority spin, the n-type PdZrTiAl, the power factor (PF) for all the cases is greater in the equilibrium state than the strain and stress conditions whereas in the majority spin, the PF value of the stress state is greater than the other two. The non-dimensional figure of merit (ZT) is significant and is about one in spin down in the room temperature for the all pressure states that it remains on this value by applying pressure. The obtained elastic constants indicate that the PdZrTiAl crystalline structure has a mechanical stability. Based on the Yong (E), Bulk (B) and shear (G) modulus and Poisson (n) ratio, the brittle-ductile behavior of this compound has been investigated under pressure. The results indicate that PdZrTiAl has a ductile nature and it is a stiffness compound in which elastic and mechanical instability increases by applying strain.
Słowa kluczowe
Twórcy
autor
  • Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
autor
  • Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
autor
  • Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
autor
  • Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
autor
  • Harsin Branch, Islamic Azad University, Harsin, Iran
autor
  • Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
autor
  • Department of Physics, University of Guilan, Rasht, Iran
Bibliografia
  • [1] G. Z. Xu, X. M. Zhang, Z. P. Hou, Y. Wang, E .K. Liu, X. K. Xi, S. G. Wang, W. Q. Wang, H. Z. Luo, W. H. Wang, G. H. Wu, EPL-Europhysics Lett. 111, 68003 (2015).
  • [2] R. A. de Groot, F. M. Mueller, P. G. van Engen, K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).
  • [3] G. Y. Gao, K.-L. Yao, Appl. Phys. Lett. 103, 232409 (2013).
  • [4] G. Gao, G. Ding, J. Li, K. Yao, M. Wu, M. Qian, Nanoscale 8, 8986-8994 (2016).
  • [5] Y. Han, M. Wu, Y. Feng, Z. Cheng, T. Lin, T. Yang, R. Khenata, X. Wang, IUCrJ. 6, 465-472 (2019).
  • [6] M. A. Carpenter, C. J. Howard, Acta Cryst. B 74, 560-573 (2018).
  • [7] Y. Han, Z. Chen, M. Kuang, Zh. Liu, X. Wang, X. Wang, Results in Physics 12, 435-446 (2019).
  • [8] Z. Li, Y. Jiang, Z. Li, C. F. Sánchez Valdés, J. L. Sánchez Llamazares, B. Yang, Y. Zhang, C. Esling, X. Zhao, L. Zuo, IUCrJ 5, 54-66 (2018).
  • [9] J.-W. G. Bos, IUCrJ 4, 712-713 (2017).
  • [10] Z. H. Liu, Z. J. Tang, J. G. Tan, Y. J. Zhang, Z. G. Wu, X. T. Wang, G. D. Liu, X. Q. Ma, IUCrJ 5, 794-800 (2018) .
  • [11] A. Erkisi, G.Surucu, J. Polytechnic. 21 (4), 927-936 (2018).
  • [12] T. Li, R. Khenata, Zh. Cheng, H. Chen, H. Yuan, T. Yang, M. Kuang, S.B. Omrand , X. Wang, Acta Cryst. B 74, 673-680 (2018).
  • [13] J. G. Tan, Z. H. Liu, Y. J. Zhang, G. T. Li, H. G. Zhang, G. D. Liu, X. Q. Ma, Results in Physics 12, 1182-1189 (2019).
  • [14] S. V. Faleev, Y. Ferrante, J. Jeong, M. G. Samant, B. Jones, S. S. P. Parkin, Phyis. Rev. Appl. 7, 034022 (2017).
  • [15] G. Qin, W. Wu, S. Hu, Y. Tao, X. Yan, Ch. Jing, X. Li, H. Gu, Sh. Cao, W. Ren, IUCrJ 4, 506-511 (2017).
  • [16] Y. Han, M. Wu, M. Kuang, T. Yang, X. Chen, X. Wang, Results in Physics 11, 1134-1141 (2018).
  • [17] I. Galanakis, P. H. Dederichs, N. Papanikolaou, Phys. Rev. B 66, 174429 (2002).
  • [18] H. Lashgari, M. R. Abolhassani, A. Boochani, E. Sartipi, R. Taghavi-Mendi, A. Ghaderi, Indian J. Phys. 90, 909 (2016).
  • [19] A. Anjami, A. Boochani, S. M. Elahi, H. Akbari, Results in Physics7, 3522 (2017).
  • [20] A. Planes, L. Mañosa, M. Acet, J. Phys. Condens. Matter. 21, 233201 (2009).
  • [21] D. Do, M. S. Lee, S.D. Mahanti, Phys. Rev. B 84, 125104 (2011).
  • [22] J. Winterlik, G. H. Fecher, A. Thomas, C. Felser, Phys. Rev. B 79, 064508 (2009).
  • [23] T. Saito, N. Tezuka, M. Matsuura, S. Sugimoto, Appl. Phys. Exp. 6, 103006 (2013).
  • [24] T. Kubota, et al., Phys. Lett. 94, 122504 (2009).
  • [25] S. Kasai, et al., J. Appl. Phys. 115, 173912 (2014).
  • [26] J. Winterlik, et al., Adv. Mater. 24, 6283 (2012).
  • [27] S. Ouardi, G. H. Fecher, C. Felser, J. Kübler, Phys. Rev. Lett. 110, 100401 (2013).
  • [28] A. Kundu, S. Ghosh, R. Banerjee, S. Ghosh, B. Sanyal, Sci. Rep. 7, 1803 (2017).
  • [29] V. Alijani, et al., Phys. Rev. B 84, 224416 (2011).
  • [30] L. Bainsla et al., J. Appl. Phys. 116, 203902 (2014).
  • [31] V. Alijani, J. Winterlik, G. H. Fecher, S. S. Naghavi, C. Felser, Phys. Rev. B 83, 184428 (2011).
  • [32] G. Y. Gao, L. Hu, K.L. Yao, B. Luo, N. Liu, J. Alloy. Compd. 551, 539-543 (2013).
  • [33] M. Singh, H. S. Saini, J. Thakur, A. H. Reshak, M. K. Kashyap, J. Alloy. Compd. 580, 201-204 (2013).
  • [34] Y. Chen, Sh. Chen, B. Wang, B. Wu, H. Huang, X. Qin, D. Li, W. Yan, Appl. Sci. 9, 620 (2019).
  • [35] L. Xiong, L. Yi, G.Y. Gao, J. Magn. Magn. Mater. 360, 98-103 (2014).
  • [36] J. M. K. Al-Zyadi, G. Y. Gao, K. L. Yao, J. Magn. Magn. Mater. 378, 1-6 (2015).
  • [37] G. Z. Xu et al., EPL-Europhysics Lett. 102, 17007 (2013).
  • [38] K. Özdoğan, E. Şaşıoğlu, I. Galanakis, J. Appl. Phys. 113, 193903 (2013).
  • [39] L. Bainsla, K. G. Suresh, Appl. Phys. Rev. 3, 031101 (2016).
  • [40] Q. Gao, H. H. Xie, L. Li, G. Lei, J. Deng, X. Hu, Superlattice Microst. 85, 536 (2015).
  • [41] X. T. Wang, T. T. Lin, H. Rozale, G. D. Liu, J. Magn. Magn. Mater. 402, 190 (2016).
  • [42] A. Birsanc, Curr. Appl. Phys. 14, 1434 (2014).
  • [43] P.-L. Yan, J.-M. Zhang, B. Zhou, Ke.-W. Xu, J. Phys. D 49, 255002 (2016).
  • [44] H.-H. Xie, Q. Gao, L. Li, G. Lei, Ge-Y. Mao, X.-Ru. Hu, J.-B. Deng, Comput. Mater. Sci. 103, 52-55 (2015).
  • [45] X. Wang, Z. Cheng, J. Wang, X. Wang, G. Liu, J. Mater. Chem. C 4, 7176 (2016).
  • [46] X. Wang, Z. Cheng, J. Wang, G. Liu, J. Mater. Chem. C 4, 8535 (2016).
  • [47] S. Berri, Chinese J. of Phys. 55, 195-202 (2016).
  • [48] L. E. Bell, Science 321, 1457-1461 (2008).
  • [49] Y. Cai, Y. Wang, D. Liu, Fu-Y. Zhao, Appl. Therm. Eng. 138, 238-255 (2019).
  • [50] G. D. Mahan, Solid S tate Phys. 51, 81 (1998).
  • [51] T. Plirdpring, K. Kurosaki, A. Kosuga, T. Day, S. Firdosy, V. Ravi, G. J. Snyder, Adv. Mater. 24, 3622 (2012).
  • [52] M. L. Liu, I. W. Chen, F. Q. Huang, L. D. Chen, Adv. Mater. 21, 3808-3812 (2009).
  • [53] F. J. Fan, B. Yu, Y. X. Wang, Y.L. Zhu, X. J. Liu, J. Am. Chem. Soc. 133, 15910-15913 (2011).
  • [54] R. Liu, L. Xi, H. Liu, X. Shi, W. Zhang, L. Chen, Chem. Commun. 48, 3818-3820 (2012).
  • [55] A. Kosuga, K. Umekage, M. Matsuzawa, Y. Sakamoto, I. Yamada, Inorg. Chem. 53, 6844-6849 (2014).
  • [56] J. Zhang, R. Liu, N. Cheng, Y. Zhang, J. Yang, C. Uher, X. Shi, L. Chen, W. Zhang, Adv. Mater. 26, 3848-3853 (2014).
  • [57] V. Kucek, C. Drasar, J. Navratil, T. Plechacek, L. Benes, J. Phys. Chem. Solids. 83, 18-23 (2015).
  • [58] E. J. Skoug, J. D. Cain, D. T. Morelli, Appl. Phys. Lett. 98, 261911 (2011).
  • [59] A. Suzumura, M. Watanabe, N. Nagasako, R. Asahi, Mater. 43, 2356-2361 (2014).
  • [60] F. J. Fan, Y. X. Wang, X. J. Liu, L. Wu, S. H. Yu, Adv. Mater. 24, 6158-6163 (2012).
  • [61] G. Zhong, K. Tse, Y. Zhang, X. Li, L. Huang, C. Yang, J. Zhu, Z. Zeng, Zh. Zhang, X. Xiao, Thin Solid Films 603, 224 (2016).
  • [62] C. Sevik, T. Çağın, Appl. Phys. Lett. 95, 112105 (2009).
  • [63] Ş. Ţălu, M. Bramowicz, S. Kulesza, A. Ghaderi, V. Dalouji, S. Solaymani, Z. Khalaj, Electron. Mater. Lett. 12, 580-588 (2016).
  • [64] Ş. Ţălu, M. Bramowicz, S. Kulesza, A. Shafiekhani, M. Rahmati, A. Ghaderi, M. Ahmadirad, S. Solaymani, Surf. Interface Anal. 49 (3), 153-160 (2017).
  • [65] S. Solaymani, A. Ghaderi, L. Dejam, Ż. Garczyk, W. Sapota, S. Stach, V. Dalouji, C. Luna, S.M. Elahi, S. H. Elahi, Int. J. Hydrog. Eng. 42 (20), 14205-14219 (2017).
  • [66] T. Plirdpring, K. Kurosaki, A. Kosuga, T. Day, S. Firdosy, V. Ravi, et al., Adv. Mater. 24, 3622-3626 (2012).
  • [67] H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen et al., Nat. Mater. 11, 422-425 (2012).
  • [68] W. Kohn, L. J. Sham, Phys. Rev. 140, A1133 (1965).
  • [69] P. Blaha, K. Schwarz, P. Herzig, Phys. Rev. Lett. 54, 1192 (1985).
  • [70] Ph. Haas, F. Tran, P. Blaha, K. Schwarz, R. Laskowsk, Phys. Rev. B 80, 195109 (2009).
  • [71] H. J. Monkhorst, J. D. Pack, Phys. Rev. B 13, 5188 (1976).
  • [72] J. D. Pack, H. J. Monkhorst, Phys. Rev. B 16,1748-1749 (1977).
  • [73] F. Murnaghan, Proc. Natl. Acad. Sci. USA. 30, 244 (1944).
  • [74] W. C. Hu, Y. Liu, D. J. Li, X. Q. Zeng, C. S. Xu, Physica B. 427, 85-90 (2013).
  • [75] G. K. H. Madsen, D. J. Singh, Comput. Phys. Commun. 175, 67 (2006).
  • [76] N. F. Mott, H. Jones, The Theory of the Properties of Metals and Alloys, Dover Publications, New York (1958).
  • [77] R. Hill, Proc. Phys. Soc. A 65, 349 (1952).
  • [78] S. F. Pugh, Magn. 45, 823-843 (1954).
  • [79] C. Jenkins, S. K. Khanna, New Insight into the Toughening Mechanisms of Seashell: From Arch Shape to Multilayer Structure, Academic Press, Cambridge, UK (2005).
  • [80] R. Iqbal, M. Bilal, S. Jalali Asadabadi, H .A. R. Aliabad, I. Ahmad, Int. J. Mod. Phys. B. 32, 1850004 (2018).
  • [81] D. G. Pettifor, Mater. Sci. Technol. 8, 345 (1992).
  • [82] P. H. Mott, J. R. Dorgan, C. M. Roland, J. Sound Vib. 312, 572 (2008).
  • [83] Y. Tian, B. Xu, Z. Zhao, Int. J. Refract. Met. Hard Mater. 33, 93-106 (2012).
  • [84] D. Guo, Ch. Hu, Y. Xi, K. Zhang, J. Phys. Chem. C. 117, 21597-21602 (2013).
  • [85] M. Irfan, Z. Abbas, S. A. Khan, M. Sohail, M. Rani, S. Azam, I. V. Kityk, J. Alloy. Comd. 750, 804-810 (2018).
  • [86] A. Shafique, Y.-H. Shin, Sci. Rep. 7, 1-10 ( 2017).
  • [87] F. Li, Z, Y. Wu, Z. Xu, X. Zhao, T. Z hu, J. Materiomics 4, 208-214 (2018).
  • [88] G. Slack, J. Phys. Chem. Solids 34, 321 (1973).
Uwagi
EN
1. This work is the result of the research project in the Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5e2c4d0-6333-4254-85fb-cb560de2534d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.