PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of Post-Mining Soil and Solid Waste from Silica Sand Purification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Post-mining soil and solid waste from the silica sand refining industry is widespread and the potential long-term impact of toxic metals and metalloids is a significant and under-appreciated issue. This study presents the characteristics of post-mining soil and solid waste resulting from silica sand purification to observe its physical, chemical, and biological composition. Analysis of the physical properties was carried out with reference to ASTM 112-10 and the results show that post-mining soil contains 36.95% sand, 18.80% clay, and 42.74% silt, with coefficients of permeability and porosity of 0.69×10-6 cm•s-1 and 35.84%, respectively. Meanwhile, the solid waste contains 43.35% sand, 35.96% clay, and 20.68% silt with coefficients of permeability and porosity of 1.49×10-6 cm•s-1 and 51.12%. The overall mineralogy and morphology of both samples showed that they have the same chemical composition as gehlenite (Ca2Al2SiO7), spinel (MgAl2O4), akermanite (Ca2MgSi2O7), monticellite (CaMgSiO4), aluminum oxide (Al2O3), magnetite (Fe3O4), and hematite (Fe2O3) supports this data. The chemical composition of both samples is SiO2, Al2O3, CaO, and MgO, but the post-mining soil has lower heavy metal and nutrient contents compared to solid waste. Meanwhile, solid waste has a high content of heavy metals and nutrients due to washing and bonding from the silica sand purification process. The abundance of bacteria (Colony Forming Unit) for the 10-4 and 10-5 dilutions in post-mining soil was 1.59×103and not detected, while in the solid waste, 4.10×105 and 1.64×105 were found, respectively. This study can be used as base values for modifying the two samples, which can be applied in mining land reclamation.
Słowa kluczowe
Rocznik
Strony
277--289
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Sepuluh Nopember Institute of Technology, ITS Sukolilo Campus, Surabaya 60111, East Java – Indonesia
  • PT. Jara Silica, Village Jenu, Tuban Regency 62352, East Java – Indonesia
  • Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Sepuluh Nopember Institute of Technology, ITS Sukolilo Campus, Surabaya 60111, East Java – Indonesia
  • Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Sepuluh Nopember Institute of Technology, ITS Sukolilo Campus, Surabaya 60111, East Java – Indonesia
Bibliografia
  • 1. Ashrafi-Shahri, S.M., Ravari, F., Seifzadeh, D. 2019. Smart organic/inorganic sol-gel nanocomposite containing functionalized mesoporous silica for corrosion protection. Prog. Org. Coatings, 133, 44–54.
  • 2. ASTM E112. 2010. Standard Test Methods for Determining Average Grain Size E112-10. Astm E112-10 96, 1–27. https://doi.org/10.1520/E0112-10.
  • 3. Ben-Awuah, E., Richter, O., Elkington, T., Pourrahimian, Y. 2016. Strategic mining options optimization: Open pit mining, underground mining or both. Int. J. Min. Sci. Technol., 26, 1065–1071.
  • 4. Cai, X., He, Z., Tang, S., Chen, X. 2016. Abrasion erosion characteristics of concrete made with moderate heat Portland cement, fly ash and silica fume using sandblasting test. Constr. Build. Mater., 127, 804–814. https://doi.org/10.1016/j.conbuildmat.2016.09.117
  • 5. Castro, A., Amaya, J., Molina, R., Moreno, S. 2020. Pillarization in concentrated media with solid Al and Al-Zr polymers to obtain acid catalysts. Catal. Today, 356, 284–291.
  • 6. Chen, Y.H., Hu, X., Lin, T., Li, Y., Ling, Z.Y. 2021. Obtaining transparent silica glass from nano-silica hydrosol. Ceram. Int., 47, 19340–19345. https://doi.org/10.1016/j.ceramint.2021.03.270
  • 7. Dai, X., Liu, H., Liu, X., Liu, Z., Liu, Y., Cao, Y., Tao, J., Shan, Z. 2021. Silicon nanoparticles encapsulated in multifunctional crosslinked nano-silica/carbon hybrid matrix as a high-performance anode for Li-ion batteries. Chem. Eng. J., 418, 129468. https://doi.org/10.1016/j.cej.2021.129468
  • 8. Dimitrova, S.V., Mihailova, I.K., Nikolov, V.S., Mehandjiev, D.R. 2012. Adsorption capacity of modified metallurgical slag. Bulg. Chem. Commun., 44, 30–36.
  • 9. Festin, E.S., Tigabu, M., Chileshe, M.N., Syampungani, S., Odén, P.C. 2019. Progresses in restoration of post-mining landscape in Africa. J. For. Res., 30, 381–396.
  • 10. FLOR, A.G. 2005. Ministry of agriculture indonesian agency for agricultural research and development.
  • 11. Fredlund, M.D., 1997. Prediction of the soil-water characteristic curve from grain-size distribution and volume-mass properties. Can. Geotech. J., 39, 1103.
  • 12. Gallage, C.P.K., Uchimura, T. 2010. Effects of dry density and grain size distribution on soil-water characteristic curves of sandy soils. Soils Found, 50, 161–172. https://doi.org/10.3208/sandf.50.161
  • 13. García-Ruiz, J.M. 2010. The effects of land uses on soil erosion in Spain: A review. Catena, 81, 1–11. https://doi.org/10.1016/j.catena.2010.01.001
  • 14. Han, X., Wang, Y., Zhang, N., Meng, J., Li, Y., Liang, J. 2021. Facile synthesis of mesoporous silica derived from iron ore tailings for efficient adsorption of methylene blue. Colloids Surfaces A Physicochem. Eng. Asp., 617, 126391.
  • 15. Hendrychová, M., Svobodova, K., Kabrna, M. 2020. Mine reclamation planning and management: Integrating natural habitats into post-mining land use. Resour. Policy, 69, 101882.
  • 16. Huang, Q., Liu, T., Zhang, J., He, X., Liu, J., Luo, Z., Lu, A. 2020. Properties and pore-forming mechanism of silica sand tailing-steel slag-coal gangue based permeable ceramics. Constr. Build. Mater., 253, 118870.
  • 17. Kasztelewicz, Z. 2014. Approaches to post-mining land reclamation in Polish open-cast lignite mining. Civ. Environ. Eng. Reports.
  • 18. Kaufmann, R.K., Kauppi, H., Mann, M.L., Stock, J.H. 2011. Reconciling anthropogenic climate change with observed temperature 1998–2008, Proceedings of the National Academy of Sciences. National Acad Sciences.
  • 19. Kawamoto, K., Yokoo, H., Ochiai, A., Nakano, Y., Takeda, A., Oki, T., Takehara, M., Uehara, M., Fukuyama, K., Ohara, Y. 2021. The role of nanoscale aggregation of ferrihydrite and amorphous silica in the natural attenuation of contaminant metals at mill tailings sites. Geochim. Cosmochim. Acta, 298, 207–226.
  • 20. Kumar Sinha, N., Kumar, J., Choudhary, I.N., Prasad, R., Singh, J.K. 2021. Utilization of industrial solid waste as a mold material in the foundry industry. Mater. Today Proc., 46, 1492–1498. https://doi.org/10.1016/j.matpr.2020.11.748
  • 21. Mihailova, I., Radev, L., Aleksandrova, V., Colova, I., Salvado, I., Fernandes, M. 2015. Novel merwinite/akermanite ceramics: in vitro bioactivity. Bulg Chem Commun, 47, 253–260.
  • 22. Mohassab-Ahmed, M.Y., Sohn, H.Y., Kim, H.G. 2012. Sulfur distribution between liquid iron and magnesia-saturated slag in H2/H2O atmosphere relevant to a novel green ironmaking technology. Ind. Eng. Chem. Res., 51, 3639–3645.
  • 23. Mueller, L., Shepherd, G., Schindler, U., Ball, B.C., Munkholm, L.J., Hennings, V., Smolentseva, E., Rukhovic, O., Lukin, S., Hu, C. 2013. Evaluation of soil structure in the framework of an overall soil quality rating. Soil Tillage Res., 127, 74–84.
  • 24. Natsir, M., Putri, Y.I., Wibowo, D., Maulidiyah, M., Salim, L.O.A., Azis, T., Bijang, C.M., Mustapa, F., Irwan, I., Arham, Z. 2021. Effects of Ni–TiO2 pillared Clay–Montmorillonite composites for photocatalytic enhancement against reactive orange under visible light. J. Inorg. Organomet. Polym. Mater., 31, 3378–3388.
  • 25. Nurbaiti, U., Pratapa, S. 2018. Synthesis of cristobalite from silica sands of Tuban and Tanah Laut. J. Phys. Conf. Ser., 983. https://doi.org/10.1088/1742-6596/983/1/012014
  • 26. Perná, I., Šupová, M., Hanzlíček, T. 2017. The characterization of the Ca-K geopolymer/solidified fluid fly-ash interlayer. Ceram. - Silikaty, 61, 26–33. https://doi.org/10.13168/cs.2016.0056
  • 27. Pratiwi, W., Karim, G.A., Rachmawati, T. 2020. Local silica sand as a substitute for standard ottawa sand in testing of cement mortar, in: Materials Science Forum. Trans Tech Publ, 220–226.
  • 28. Ramezanianpour, A.A., Mortezaei, M., Mirvalad, S. 2021. Synergic effect of nano-silica and natural pozzolans on transport and mechanical properties of blended cement mortars. J. Build. Eng., 44. https://doi.org/10.1016/j.jobe.2021.102667
  • 29. Ratnawulan, R., Fauzi, A., Hayati, A.E.S. 2018. Characterization of Silica Sand Due to the Influence of Calcination Temperature. IOP Conf. Ser. Mater. Sci. Eng., 335, 0–5. https://doi.org/10.1088/1757-899X/335/1/012008
  • 30. Ruíz-Baltazar, A., Esparza, R., Rosas, G., Pérez, R. 2015. Effect of the surfactant on the growth and oxidation of iron nanoparticles. J. Nanomater., 2015.
  • 31. Santos, M.F.M., Fujiwara, E., Schenkel, E.A., Enzweiler, J., Suzuki, C.K. 2015. Processing of quartz lumps rejected by silicon industry to obtain a raw material for silica glass. Int. J. Miner. Process., 135, 65–70. https://doi.org/10.1016/j.minpro.2015.02.002
  • 32. Skousen, J., Zipper, C.E. 2014. Post-mining policies and practices in the Eastern USA coal region. Int. J. coal Sci. Technol., 1, 135–151.
  • 33. Susianti, B., Warmadewanthi, I.D.A.A., Tangahu, B.V. 2022. Characterization and experimental evaluation of cow dung biochar + dolomite for heavy metal immobilization in solid waste from silica sand purification. Bioresour. Technol. Reports 18, 101102. https://doi.org/10.1016/j.biteb.2022.101102
  • 34. Tangahu, B.V. 2017. Bioremediation of Oil Contaminated Soil by Biostimulation Method Using NPK Fertilizer. Open Access Libr. J., 4, 1.
  • 35. Turrión, D., Morcillo, L., Alloza, J.A., Vilagrosa, A. 2021. Innovative techniques for landscape recovery after clay mining under mediterranean conditions. Sustain., 13, 1–18. https://doi.org/10.3390/su13063439
  • 36. Uhland, R.E., Alfred, M. 1951. Soil permeability determinations for use in soil and water conservation. LWW.
  • 37. Warmadewanthi, I.D.A.A., Chrystiadini, G., Kurniawan, S.B., Abdullah, S.R.S. 2021a. Impact of degraded solid waste utilization as a daily cover for landfill on the formation of methane and leachate. Bioresour. Technol. Reports, 15. https://doi.org/10.1016/j.biteb.2021.100797
  • 38. Warmadewanthi, I.D.A.A., Zulkarnain, M.A., Ikhlas, N., Kurniawan, S.B., Abdullah, S.R.S. 2021b. Struvite precipitation as pretreatment method of mature landfill leachate. Bioresour. Technol. Reports, 15, 100792. https://doi.org/10.1016/j.biteb.2021.100792
  • 39. Zhang, J., Liu, T., Huang, Q., Luo, Z., Lu, A., Zhu, L. 2020. Preparation, properties characterization and structure formation mechanism of silica sand tailings-based ceramic materials. Mater. Chem. Phys., 255, 123611.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5e1eaa5-410b-4003-b0b5-7271293a9b76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.