Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
AZ91 magnesium alloy matrix composites with aluminosilicate glass cenospheres were fabricated successfully by the pressure infiltration method. Different parameters of the fabrication process, such as temperature of the mould and temperature of cenospheres were used. Influence of the temperature variation of particular parameters on the microstructure has been investigated. The microstructure of AZ91 magnesium alloy and fabricated composites have been investigated by light microscopy (LM) and scanning electron microscopy (SEM). The results revealed that AZ91 magnesium alloy consists of α-Mg matrix and eutectic α-Mg17Al12 and a small amount of discontinuous precipitates of γ phase. The microstructure of matrix AZ91 in fabricated composites is characterized also by the presence of α-Mg matrix and eutectic α-Mg17Al12. However, in the composite fabricated by using the mould heated to 500 °C more discontinuous precipitates of γ phase were observed.
Czasopismo
Rocznik
Strony
107--110
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Materials Engineering, Częstochowa University of Technology, al. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
- Institute of Materials Engineering, Częstochowa University of Technology, al. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
- Institute of Materials Engineering, Częstochowa University of Technology, al. Armii Krajowej 19, 42-200 Częstochowa, Poland
Bibliografia
- [1] Sobczak J., Wojciechowski S.: Współczesne tendencje praktycznego zastosowania kompozytów metalowych, Composites, 2002, s. 23-27.
- [2] Lu L., Lim C. Y. H., Yeong W. M.: Effect of reinforcement on strength of Mg9%Al composites, Composite structures, 2004, Vol. 66, p. 41-45.
- [3] Li Q., Rottmair Ch., Singer R.: CNT reinforced light metal produced by melt stirring and by high pressure die casting, Composites Science and Technology, 2010, Vol. 70, p. 2242-2247.
- [4] Mordike D. L., Ebert T.: Magnesium Properties - applications - potential, Materials Science and Engineering, 2001, Vol. A302, p. 37–45.
- [5] Easton M., Beer A., Barnett M., Davies C., Dunlop G., Durandet Y., Blacket S., Hilditch T., Beggs P.: Magnesium alloy applications in automotive structures, Journal of the Minerals, Metals and Materials Society, 2008, Vol. 60, p. 57-62.
- [6] Caceres C.H., Davidson C.J., Griffiths J.R., Newton C.L.: Effects of solidification rate and agening on the microstructure and mechanical properties of AZ91 alloy, Materials Science and Engineering, 2002, Vol. A325, p. 344-355.
- [7] Fu P., Luo A., Jiang H., Peng L., Yu Y., Zhai Ch., Sachdev A.: Low-pressure die casting of magnesium alloy AM50: Response to process parameters, Journal of Materials Processing and Technology, 2008, Vol. 25, p. 224-234.
- [8] Huang Z., S. Yu.: Microstructure characterization on the formation of in situ Mg2Si and MgO reinforcement in AZ91/Fly ash composites, Journal of Alloys and Compounds, 2011, Vol. 509, p. 311-315.
- [9] Daoud A., Abou El-khair M. T., Abdel-Aziz M., Rohatgi P. K.: Fabrication, microstructure and compressive behavior of ZC63 Mg–microballoon foam composites, Composites Science and Technology, 2007, Vol. 67, p. 1842–1853.
- [10] Huang Z., Yu S., Li M.: Microstructures and compressive properties of AZ91D/fly-ash cenospheres composites, Trans. Nonferrous Metals Society China, 2010, Vol. 20, p. 458-462.
- [11] Rohatgi P. K., Guo R. Q., Iksan H., Borchelt E. J., Asthana R.: Pressure infiltration technique for synthesis of aluminum-fly ash particulate composite, Materials Science and Engineering A, 1998, Vol. 244, p. 22-30.
- [12] D. Luong, N. Gupta, P. K. Rohatgi.: The high strain rate compressive response of Mg-Al alloy/fly ash cenosphere composites, JOM, 2011, Vol. 63, p. 48-52.
- [13] Vassilev V. S., Menendez R., Diaz-Somoano M., Martinez-Tarazona R. M.: Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 2. Characterization of ceramic cenosphere ans salt concentrates, Fuel, 2004, Vol. 83, p. 585-603.
- [14] Kutchko B. G., Kim A. K.: Fly ash characterization by SEM–EDS, Fuel, 2006, Vol. 85, p. 2537–2544.
- [15] Vassilev V. S., Menendez R., Alvarez D., Diaz-Somoano M., Martinez-Tarazona R. M.: Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 1. Characterization of feed coals and fly ashes, Fuel, 2003, Vol. 82, p. 1793-1811.
- [16] Matsunaga T., Kim J.K., Hardcastle S., Rohatgi P.K.: Crystallinity and selected properties of fly ash particles, Materials Science Engineering A, 2002, Vol. 325, p. 333–343.
- [17] Kamieniak J., Żydek A., Braszczyńska-Malik K. N.: Aluminosilicate glass cenospheres as a component of cast magnesium matrix composites, Archives of Foundry Engineering, 2011, Vol. 11, p. 109-112.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5e0be37-a9be-4a04-a415-dd552558ec32