PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper addresses the problem of controlling a robotic hand in tasks that require precise regulation of the applied force, as well as efficient use of actuators, ensuring that these operate safely within their torque limits. The proposed control structure is composed of generalized saturation functions, which have been widely used for the control of robotic systems that move freely without interacting with the environment; however, in this work they are used to regulate the forces generated by the interaction of a robotic hand and the objects that it can manipulate. The force/position control scheme is also used to validate the design of a robotic hand, whose dynamic modeling was obtained with computer-aided design (SolidWorks) and numerical simulation (Simscape MultibodyTM) tools. The results obtained validate both the effectiveness of the proposed control scheme and the usefulness of the computational tools used to characterize the dynamics of the robotic fingers.
Twórcy
  • Faculty of Sciences, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
  • Robotics Engineering Department, Autonomous University of Aguascalientes, Aguascalientes, Mexico
  • Faculty of Sciences, Autonomous University of San Luis Potossí, Av. Chapultepec 1570, Privadas del Pedregal, San Luis Potossí 78295, Mexico
  • Faculty of Sciences, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
  • Viretrade S.A. de C.V., Servicios de Ingeniería Especializada, San Luis Potosí, Mexico
Bibliografia
  • [1] Atzori M, Müller H. Control capabilities of myoelectric robotic prostheses by hand amputees: a scientific research and market overview. Front Syst Neurosci 2015;9:162.
  • [2] Belter JT, Segil JL, Dollar AM, Weir RF. Mechanical design and performance specifications of anthropomorphic prosthetic hands: a review. J Rehab Res Develop 2013;50(5):599–618.
  • [3] Vujaklija I, Farina D, Aszmann OC. New developments in prosthetic arm systems. Orthopedic Res Rev 2016;8:31–9.
  • [4] Sánchez-Velasco LE, Arias-Montiel M, Guzmán-Ramírez E, Lugo-González E. A low-cost emg-controlled anthropomorphic robotic hand for power and precision grasp. Biocybern Biomed Eng 2020;40(1):221–37.
  • [5] Benatti S, Milosevic B, Farella E, Gruppioni E, Benini L. A prosthetic hand body area controller based on efficient pattern recognition control strategies. Sensors 2017;17(4):869.
  • [6] Geethanjali P. Myoelectric control of prosthetic hands: state-of-the-art review. Med Devices: Evid Res 2016;9:247–55.
  • [7] Shi WT, Lyu ZJ, Tang ST, Chia TL, Yang CY. A bionic hand controlled by hand gesture recognition based on surface emg signals: A preliminary study. Biocybern Biomed Eng 2018;38 (1):126–35.
  • [8] Yu X, He W, Li H, Sun J. Adaptive fuzzy full-state and output-feedback control for uncertain robots with output constraint. IEEE Trans Syst Man Cybern: Syst 2021;51(11):6994–7007.
  • [9] Chávez-Olivares C, Reyes-Cortés F, González-Galván E. On explicit force regulation with active velocity damping for robot manipulators. Automatika 2015;56(4):478–90.
  • [10] Reyes-Cortés F, Chávez-Olivares C, González-Galván EJ. A family of hyperbolic-type explicit force regulators with active velocity damping for robot manipulators. J Robot 2018;2018:9324623.
  • [11] Villani L, De Schutterm J. Handbook of Robotics. Berlin: Springer; 2008 [Chapter 7].
  • [12] Cheng S, Yi A, Tan UX, Zhang D. Closed-loop system for myoelectric hand control based on electrotactile stimulation. In: Proc. 2018 3rd International Conference on Advanced Robotics and Mechatronics (ICARM). p. 486–90.
  • [13] Kappassov Z, Corrales JA, Perdereau V. Tactile sensing in dexterous robot hands – review. Robot Autonomous Syst 2015;74:195–220.
  • [14] Li C, Wang N. Design and development of semg-controlled prosthetic hand with temperature and pressure sensory feedback. In: In: Proc. 2020 International Conference on Intelligent Robotics and Applications. p. 320–31.
  • [15] Matos A, Caballa S, Zegarra D, Guzman MAA, Lizano D, Encinas DFG, et al. Three-fingered gripper for multiform object grasping with force feedback sensing control. In Proc. 2020 IEEE ANDESCON. 2020, p. 1–5.
  • [16] Votta AM, Günay SY, Erdoğmus D, Önal Ç. Force-sensitive prosthetic hand with 3-axis magnetic force sensors. In: Proc. 2019 IEEE International Conference on Cyborg and Bionic Systems (CBS). p. 104–9.
  • [17] Weiner P, Neef C, Shibata Y, Nakamura Y, Asfour T. An embedded, multi-modal sensor system for scalable robotic and prosthetic hand fingers. Sensors 2020;20 (1):101.
  • [18] Zeng B, Fan S, Jiang L, Liu H. Design and experiment of a modular multisensory hand for prosthetic applications. Ind Robot: Int J 2017;44(1):104–13.
  • [19] Torres-Cresto AC, Nakagawa-Silva A, Barbosa-Soares A. Investigating dynamic grip force control during object manipulation to design improved control schemes of prosthetic hands. In Proc. XXVI Brazilian Congress on Biomedical Engineering; 2019. pp. 661–666.
  • [20] Dunai L, Novak M, García Espert C. Human hand anatomybased prosthetic hand. Sensors 2021;21(1):137.
  • [21] Esposito D, Cosenza C, Gargiulo GD, Andreozzi E, Niola V, Fratini A, et al. Experimental study to improve ‘‘federica” prosthetic hand and its control system. In: Proc. 2019 Mediterranean Conference on Medical and Biological Engineering and Computing. p. 586–93.
  • [22] Padron B, Cruz-Miguel EE, Jauregui-Correa JC, Carbone G. A force control architecture for grasping with a robotic finger. In: Proc. 2021 International Symposium on Multibody Systems and Mechatronics. p. 214–21.
  • [23] Capsi-Morales P, Piazza C, Catalano MG, Bicchi A, Grioli G. Exploring stiffness modulation in prosthetic hands and its perceived function in manipulation and social interaction. Front Neurorobot 2020;14:33.
  • [24] Ren J, Li C, Huang H, Wang P, Zhu Y, Wang B, et al. Grasping force control of prosthetic hand based on pca and svm. In: Advanced computational methods in life system modeling and simulation . Springer; 2017. p. 222–30.
  • [25] Rani M, Kumar N. A new hybrid position/force control scheme for coordinated multiple mobile manipulators. Arab J Sci Eng 2019;44(3):2399–411.
  • [26] Gutierrez-Giles A, Evangelista-Hernandez LU, Arteaga MA, Cruz-Villar CA, Rodriguez-Angeles A. A force/motion control approach based on trajectory planning for industrial robots with closed control architecture. IEEE Access 2021;9:80728–40.
  • [27] Yu X, He W, Li Q, Li Y, Li B. Human-robot co-carrying using visual and force sensing. IEEE Trans Industr Electron 2021;68 (9):8657–66.
  • [28] Heidarzadeh S, Sharifi M, Salarieh H, Alasty A. A novel stable robust adaptive impedance control scheme for ankle prostheses. In: Proc. 2017 5th RSI International Conference on Robotics and Mechatronics (ICRoM). p. 63–8.
  • [29] Lee SH, Kim JY. Walking algorithm for a robotic transfemoral prosthesis capable of walking pattern recognition and posture stabilization. Adv Robot 2017;31(18):965–89.
  • [30] Rampeltshammer WF, Keemink AQ, Van Der Kooij H. An improved force controller with low and passive apparent impedance for series elastic actuators. IEEE/ASME Trans Mechatron 2020;25(3):1220–30.
  • [31] Yang D, Wu G. A multi-threshold-based force regulation policy for prosthetic hand preventing slippage. IEEE Access 2021;9:9600–9.
  • [32] Zhang T, Jiang L. Biomimetic tactile data driven closed-loop control of myoelectric prosthetic hand. In: Proc. 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO). p. 1738–42.
  • [33] Maldonado-Fregoso B, Mendoza-Gutierrez M, Bonilla-Gutierrez I, Vidrios-Serrano C. A generalized adaptive stiffness control scheme for robot manipulators with bounded inputs. Asian J Control 2021;23(6):2550–64.
  • [34] Rodríguez-Liñán M, Mendoza M, Bonilla I, Chávez-Olivares C. Saturating stiffness control of robot manipulators with bounded inputs. Int J Appl Math Comput Sci 2017;27 (1):79–90.
  • [35] Vidrios-Serrano C, Mendoza M, Bonilla I, Maldonado-Fregoso B. A generalized vision-based stiffness controller for robot manipulators with bounded inputs. Int J Control Autom Syst 2021;19(1):548–61.
  • [36] Eidson CA, Jenkins GR, Yuen HK, Abernathy AM, Brannon MB, Pung AR, et al. Investigation of the relationship between anthropometric measurements and maximal handgrip strength in young adults. Work 2017;57(1):3–8.
  • [37] Kelly R, Santibáñez V, Loría A. Control of robot manipulators in joint space. London: Springer; 2006.
  • [38] Canudas C, Siciliano B, Bastin G. Theory of robot control. London: Springer; 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5dd43ea-588f-477e-a1fe-a12216f5fd55
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.