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AWEIBULL FAILURE MODEL TO THE STUDY OF THE
HIERARCHICAL BAYESIAN RELIABILITY

MODEL USZKODZEN APROKSYMOWANY ROZKLADEM WEIBULLA
DO BADANIA NIEZAWODNOSCI REPREZENTOWANE)
ZA POMOCA HIERARCHICZNEJ SIECI BAYESOWSKIEJ

This paper describes the unknown parameter and reliability function of the Weibull distribution based on hierarchical Bayesian
model for the progressively Type-II censored data. The scale parameter of the Weibull distribution is considered with a gamma
prior under the shape parameter is known. Furthermore, the scale parameter of the gamma prior is assumed to be three different
known hyper prior. Under these assumptions, the Weibull parameter and reliability function estimators are derived based on the
squared error loss (SEL) function, which can be easily extended to other loss functions situation. The result from hierarchical
Bayesian method is used to compare with Bayes and maximum likelihood estimate (MLE) methods. The simulation shown that
the results from Bayes is the best, followed by hierarchical Bayesian method, and then MLE in terms of root mean square error
(RMSE). Finally, one real dataset has been analyzed for illustrative purposes.

Keywords: Hierarchical Bayesian model, Progressive Type-1I censoring, Hyper parameter, Monte Carlo simu-
lation, Parameter estimation.

W prezentowanej pracy opisano metode estymacji nieznanego parametru oraz funkcji niezawodnosci rozkladu Weibulla w oparciu
o hierarchiczny model Bayesa dla danych ucietych (cenzurowanych) progresywnie typu Il. Rozwazano parametr skali rozkladu
Weibulla o rozkladzie prawdopodobienstwa apriorycznego gamma w sytuacji, gdzie wartos¢ parametru ksztattu bylta znana. Po-
nadto, przyjeto, ze (hiper)parametr skali rozktadu apriorycznego gamma moze miec trzy rézne, znane hiper-rozkiady aprioryczne
(ang. hyper priors). Przy tych zaloZeniach, estymatory parametru i funkcji niezawodnosci rozkladu Weibulla wyprowadzono na
podstawie kwadratowej funkcji straty (ang. squared error loss, SEL), ktorq mozna tatwo rozszerzyé na inne funkcje straty. Wyniki
otrzymane z wykorzystaniem hierarchicznej metody Bayesowskiej porownano z wynikami klasycznej estymacji Bayesowskiej oraz
estymacji metodq najwigkszego prawdopodobienstwa (ang. maximum likelihood estimate, MLE). Symulacja wykazata, Ze najlep-
sze wyniki, jesli chodzi o srednig kwadratowq bledow (ang. root mean squared error, RMSE), daje metoda Bayesa, a w dalszej
kolejnosci hierarchiczna metoda Bayesa oraz MLE. W koncowej czesci pracy rozwazane problemy zilustrowano analizujgc zbior
danych rzeczywistych.

Stowa kluczowe: hierarchiczny model bayesowski , ucinanie progresywne typu I, hiperparametr, symulacja
Monte Carlo, estymacja parametrow.

1. Introduction

The Weibull distribution was introduced by the Swedish physi-
cist Weibull [17], it has been used in many different fields like mate-
rial science, engineering, physics, chemistry, meteorology, medicine,
pharmacy, economics and business, quality control, biology, geology
and geography, see for example [14]. The two parameters Weibull dis-
tribution is one of the most widely used lifetime models in reliability
and survival analysis because of its various shapes of the probability
density function(pdf) and its convenient representation of the survival
function. In any practical situation, however, the parameters of the
Weibull model cannot be known with certainly, especially if the avail-
able data are sparse. The estimation of its parameters has been dis-
cussed by a number of authors: see for example, Zakerzadeh and Ja-
fari [18], Wang and Ye [16], Doostparast [8]. During the recent several
years a number of papers have adopted the Bayesian approach to dealt
with the uncertainty about the parameter by different prior distribution
for example, see Soland [15], Kaminskiy and Krivtsov [9], Berger and
Sun [6] and Kundu and Joarder [12] and Kundu [11] among others.

In particular, Kundu [11] studied the Weibull distribution as a failure
model from the Bayesian approach, by considering gamma prior for
the scale parameter when the shape parameter is known.

In this study, the scale parameter of the Weibull failure model will
be discussed when the shape parameter is known. The scale parameter
is considered a random variable with a Gamma(a, b) distribution as a
prior. Further more the hyper parameter b of Gamma(a, b) cannot be
specified but one is willing to assign a hyper prior distribution. Spe-
cifically three hyper prior distributions for the scale hyper parameter b
will be considered, a uniform, a truncated exponential and an improp-
er prior. Aforementioned three hyper prior were discussed by Alex [3]
based on complete sample for exponential failure model. Using these
hyper prior, we developed a class of method based on censored sam-
ple under hierarchical Bayesian model. Although extensive work has
been done on the statistical inferences of the unknown parameters of
the Weibull distribution for censored sample data in the Bayesian con-
text, but not much work has been done for censored sample data in the
hierarchical Bayesian set up. Among the different censoring schemes

EkspLoATACIA | NiIEZAWODNOSC — MAINTENANCE AND REeLIABILITY VOL.18, No. 4, 2016 501




SCIENCE AND TECHNOLOGY

Type-I and Type-I1I are the two most popular. In the last few years, the
progressive Type-1I censoring scheme has been received considerable
attention, see the book by Balakrishnan and Aggrawala[4] and also
there are excellent review article by Balakrishnan[5].

The progressive Type-Il censoring scheme can be briefly de-
scribed as follows. Suppose that »n identical units are put on test.
The integer m <n is pre-fixed and also R;,---,R,, are m pre-fixed
non-negative integers such that Rj+---+R,, + m=n . At the time of
the first failure #, R, of the remaining units are randomly removed.
Similarly, at the time of the second failure #,, R, of the remain-
ing units are removed and so on. Finally, at the time of the m -th
failure the rest of the R,, =n—R; —---—R,,_; —m units are removed.
Note that the usual Type-II censoring scheme can be obtained as a
special case of the progressive censoring scheme, simply by taking
Rj=-=R, =0.

The rest of the paper is organized as follows. In the next Section,
the Bayesian and MLEs of the unknown parameter and reliability
function are presented. In Section 3, we introduce three hyper priors
to construct the hierarchical Bayesian estimators for the unknown pa-
rameter and reliability function. Two simulation datasets have been
analyzed in Section 4. A real dataset is analyzed for illustration in
Section 5. Finally, conclusions appear in Section 6.

2. Maximum likelihood and Bayesian estimates

A random variable X follows the Weibull distribution with param-
eters a and 4, and is denoted by X ~ WE(a, 1) . Its probability den-
sity function (pdf) is that:

f(x;oc,l)=oc/'Le_’lx(Z ¥ x>0 (1)

Then the reliability function of X is given by R(x;a,4) = e ,
where « >0 and A >0 are the shape and scale parameters re-
spectively. In the case of progressive Type-Il censored data, let

m(l<m<n) denote the number of observed failures and x;,---,x,,
denote the progressive Type-II censored sample, when « is known,
the likelihood function:

L(A;data) oc A"e T, 2

m
where T'=%"(R;+1)x;% . The differential equation of the loga-
i=1
rithm likelihood function based on progressive Type-II censored
sample is:

dinL m &
m :;—Z(Rl-+l)xia =0. 3)
i=1

Eq.(3) readily yields a closed-form expression for the MLE of 4
as follows:

Y
1]
N3

Furthermore, we derived MLE for the reliability function given as

A 7.0
R(x)= ¢ . And we assume that 1 has a gamma prior distribution

a
with pdf n(z|a,b):%/1“*1e*“,/1 >0, the hyper parameters
a

a>0,b>0,and I'(a)= L:O xe ™ dx . The posterior distribution of
A, given the data and the hyper parameters « and b, is

Gamma (a +m, b+T ) [11]. Therefore, the Bayesian estimators of 4

and R(x) with respect to SEL function are:

a+m
b+T’

4o = E(\ | data) =

where E is operator of expected value , and:

Ro(x) = E(R(x) | data) = (bbij .

+T+x*

3. Hierarchical Bayesian model

In the section 2, we obtain the Bayesian estimators of 4 and R(x)
when gamma prior parameters are known. In this section, we will
consider the hierarchical Bayesian estimators when the hyper param-

eter a is known but the hyper parameter » behaves as a random
variable.

3.1.  Uniform prior for the hyper parameter b

Suppose unknown hyper parameter 5 inthe prior Gamma(a, b)
follows uniform distribution with pdf:

1
d-c

» 0<ce<d - (4)

The parameters ¢ and d4 are assumed to be known. From

Gamma(a, b) and (4), the prior of / is:

a
2%l ap (5)

Under the WE(a, A) model from (1), the likelihood function of the
progressive Type-1I censored data is proportion to (2). This likelihood
is combined with the prior (5) via Bayesian theorem to obtain the 4
posterior pdf:

1 (d b
I

la_]e_bldb
d-c¢ F(a) '

n (l‘data) o g1 (A)L(A;data) o« AT
Under SEL function, the hierarchical Bayesian estimators of A and
R(x) are given by:

. _m+a B%+T(a+1,m)fB%+T(a+l,m)
41 = E(4| data) === (a+1,m-1)-B,, (a+lLm-1)
%+T . - %+T ¢ -

and:

1By (a+1L,m-1)-B, (a+1,m—1)
" /d+T+x°‘ %+T+x°‘

,\ T
R =E(R d =
l(x) ( (x)l ata) [Teraj B%+T(a+l,m71)fB%+T(a+l,mfl)
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respectively. Here B, (i, /) = I g tH(l —t)-j “ldt denotes the incom-
plete beta function (see, Abramwitz and Stegun([2]).
3.2. Truncated exponential prior for b

Suppose that the prior distribution for the hyper parameter b is
a truncated exponential distribution given by conditional probability
density function:

1y (b|uv,0)=ce®, u<b<v, >0,

where ¢ ,=0/(c % —¢) and u >0, using the same procedure

as previously, we obtain the prior pdf of /:

b jar1gbh
W)= —— _eu_ —9vr( ),1‘1 db
and posterior pdf of 1:
0b
hy (Adata) o g (4)L(%;data) o 2"e [ mrlz ; g

The Bayesian estimators for the parameter 4 and reliability func-

tion R(x) are given by:

Jrpe Ty e hap

= E(\|data)= (m + a) (6)
(data)= () [[6e @ +y e Otap
and
)= E(R(o)|data)= fop s ) ey
R (x) = E(R(x)|data )= 7
b (b+T e ’db
2 J‘ ( ) (m+a) 9b ( )
respectively.

Unfortunately the estimators in (6) and (7) are not in closed form
and numerical technique have to be utilized in evaluating the integrals
involved.

m—1,~2T mm
h3 (l‘data) = /’LFT)T’

A>0.

Under SEL function, the hierarchical Bayesian estimators of 4 and

R(x) are given by:
i} = E()»ldata)z %

and:

ﬁ3(x)—E(R(x)|data)—( ” )m
T+x%

respectively.

4. Simulation study

In this section, we present experimental results to observe the be-
havior of the proposed method for different sample sizes (n ), differ-
ent effective sample sizes (m ), different priors and for the different
progressive Type-II censoring schemes. We have considered sample
sizes (n =20, 30, 50), effective sample sizes (m =15, 20, 35) , and
nine censoring schemes. Details of the schemes are given in Table 1.

Special sample schemes were simulated from the WE(0.8, 1)
and WE(0.8, 1.5). The average estimates for the parameter and the
reliability function were computed from the generated progressively
Type-II censored sample based on 1000 replications. In all cases,
mainly to compare the MLEs, Bayesian estimates and different hi-
erarchical Bayesian estimates of the unknown parameter 4 and some
values of reliability function R(x) . We also compute the correspond-
ing RMSEs of the estimates based on 1000 replications. Using the
expression described in Section 2 and Section 3, we obtain MLEs,
Bayesian and hierarchical Bayesian estimates of A and R(x) in Table
2 from the WE(0.8, 1) and Table 3 from the WE(0.8, 1.5) . For Baye-
sian estimates, we used parameter values @ =1, b =2 For hierarchi-
cal Bayesian estimates, we using the Monte Carlo technique to com-
pute hierarchical Bayesian estimates of the unknown parameter / as
well as reliability function R(x) . The parameter a’s value is also set

3.3. Improper prior for b Table 1. Several censoring schemes for the simulation study
Let the prior for b be: n m Ry, Ry ii?:g:;
1 20 15 Ry=--=Rjy=0,Rs5=5 1
7r3(b)ocg, 0<b<oo ®) 1 14 15 (1
Ry=5Ry=-=Rs5=0 [2]
from Gamma(a, b) and (8), the prior of 4 is: Ri=+=Rs=1,Rg=--=R;5=0 [3]
30 200 Ry=-=Rj9=0, Ry =10 [4]
1 b* -
)=["~ 297 le % dp ) R =10, Ry=-+=Ry, =0 (5]
0 bT(a)
Ri=-=Ry=0,Rg=R =5 Rp=-=Ry=0 [6]
Under the WE(a, 2) model from (1), the likelihood 50 35 R =-=Ryy =0, Rys =15 (7]
function of progressive Type-II censored data is propor-
tion to (2). This likelihood is combined with the prior (9) Ri==Ry3=0, R34y =5, B35 =10 (8]
via Bayesian theorem to obtain the 4 posterior pdf:
Ri=-Ry=5R,==Ry=0 191
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Table 2. Average values of the estimators and their RMSEs when o. =0.8, A =1 and x=0.2

Scheme MLEs Bayesian estimates Hierarchical Bayesian estimates

8 R(x) Ay Ry(x) M Ry(x) Ay Ry (x) M R (x)

[1] Estimates 1.1054 0.7411 1.0597 0.7504 1.1735 0.7569 1.0965 0.7430 1.0692 0.7490
RMSEs 0.3873 0.7400 0.2674 0.0500 0.2882 0.0524 0.2895 0.0568 0.2934 0.0568

[2] Estimates 0.9959 0.7630 1.0640 0.7495 1.1781 0.7561 1.1010 0.7421 1.0737 0.7481
RMSEs 0.3439 0.0689 0.2659 0.0500 0.2867 0.0524 0.2884 0.0564 0.2909 0.0567

[3] Estimates 1.0115 0.7601 1.0636 0.7497 11777 0.7563 1.1014 0.7424 1.0737 0.7482
RMSEs 0.3686 0.0725 0.2753 0.0515 0.2967 0.0539 0.3004 0.0581 0.3022 0.0584

[4] Estimates 1.1138 0.7385 1.0400 0.7535 1.1226 0.7584 1.0660 0.7486 1.0451 0.7528
RMSEs 0.3417 0.0663 0.2377 0.0458 0.2515 0.0475 0.2521 0.0508 0.2533 0.0503

[5] Estimates 0.9670 0.7679 1.0467 0.7520 1.1298 0.7569 1.0734 0.7471 1.0518 0.7512
RMSEs 0.2788 0.0567 0.2232 0.0430 0.2362 0.0445 0.2370 0.0470 0.2379 0.0472

[6] Estimates 1.0404 0.7532 1.0457 0.7523 1.1287 0.7572 1.0725 0.7473 1.0511 0.7515
RMSEs 0.3226 0.0634 0.2349 0.0449 0.2483 0.0466 0.2481 0.0499 0.2509 0.0494

[7] Estimates 1.0666 0.7466 1.0254 0.7552 1.0711 0.7581 1.0397 0.7530 1.0271 0.7550
RMSEs 0.2434 0.0485 0.1793 0.0356 0.1852 0.0363 0.1851 0.0384 0.1856 0.0375

[8] Estimates 1.0698 0.7459 1.0276 0.7547 1.0734 0.7576 1.0428 0.7523 1.0293 0.7545
RMSEs 0.2358 0.0474 0.1742 0.0348 0.1799 0.0355 0.1810 0.0375 0.1799 0.0366

[9] Estimates 0.9346 0.7739 1.0279 0.7547 1.0736 0.7575 1.0426 0.7521 1.0296 0.7544
RMSEs 0.2139 0.0441 0.1761 0.0348 0.1818 0.0355 0.1832 0.0372 0.1824 0.0367

Table 3. Average values of the estimators and their RMSEs when oo =0.8, A =1.5and x=0.1
Scheme MLEs Bayesian estimates Hierarchical Bayesian estimates

8 R(x) Ay Ry(x) M Ry (x) Ay Ry(x) A Ry(x)

[1] Estimates 1.8804 0.7460 1.5633 0.7834 1.7136 0.7911 1.6523 0.7730 1.6359 0.7752
RMSEs 0.6528 0.0723 0.3752 0.0421 0.3991 0.0447 0.4304 0.0515 0.4439 0.0516

[2] Estimates 1.6646 0.7715 1.5477 0.7854 1.6967 0.7930 1.6346 0.7750 1.6190 0.7774
RMSEs 0.6058 0.0706 0.3933 0.0444 0.4187 0.0471 0.4487 0.0535 0.4624 0.0542

[3] Estimates 1.6658 0.7712 1.5318 0.7872 1.6779 0.7947 1.6165 0.7770 1.5995 0.7796
RMSEs 0.5957 0.0682 0.3734 0.0420 0.3974 0.0446 0.4291 0.0503 0.4413 0.0514

[4] Estimates 1.8717 0.7463 1.5343 0.7863 1.6433 0.7921 1.5965 0.7789 1.5831 0.7807
RMSEs 0.5847 0.0637 0.3375 0.0385 0.3532 0.0403 0.3745 0.0449 0.3840 0.0449

[5] Estimates 1.0657 0.7772 1.5341 0.7862 1.6431 0.7920 1.5971 0.7790 1.5819 0.7806
RMSEs 0.4569 0.0543 0.3131 0.0362 0.3279 0.0379 0.3431 0.0425 0.3516 0.0420

[6] Estimates 1.7126 0.7645 1.5213 0.7878 1.6296 0.7935 1.5801 0.7800 1.5677 0.7824
RMSEs 0.4943 0.0578 0.3159 0.0366 0.3309 0.0383 0.3448 0.0430 0.3542 0.0424

[7] Estimates 1.7639 0.7575 1.5110 0.7883 1.5710 0.7916 1.5440 0.7840 1.5353 0.7853
RMSEs 0.3879 0.0458 0.2530 0.0303 0.2596 0.0311 0.2655 0.0335 0.2687 0.0329

[8] Estimates 1.7607 0.7579 1.5095 0.7885 1.5695 0.7918 1.5431 0.7850 1.5338 0.7856
RMSEs 0.3990 0.0483 0.2574 0.0305 0.2640 0.0314 0.2703 0.0342 0.2745 0.0332

[9] Estimates 1.5706 0.7808 1.5324 0.7856 1.5930 0.7891 1.5666 0.7818 1.5582 0.7826
RMSEs 0.3565 0.0430 0.2603 0.0309 0.2670 0.0317 0.2744 0.0347 0.2776 0.0336

to 1.The hyper parameter settings are as follows: the first is uniform estimators, no matter which one we think is right, others “wrong”

prior: ¢=1, d =2 the second prior is truncated exponential distri-
bution, for the second hyper prior, we have used the hyper parameters
valueas u =0, v=1, 0=l; the third prior is improper prior.

Table 2 and Table 3 show that as effective sample size increas-
es, the RMSEs of hierarchical Bayesian estimates decrease as well
as Bayesian and MLEs. As far as A and R(x), the performance of
Bayesian estimation is better than MLE in terms of RMSE. Experi-
mental results indicate that the hierarchical Bayesian estimates for
the reliability function R(x) and parameter 1 are better than the ones
obtained for the maximum likelihood in the sense that they have
smaller RMSEs. However, the hierarchical Bayesian estimates for
the reliability function R(x) and parameter A are worse slightly than
the Bayesian estimates due to uncertainty of 4. Three different hyper
priors were performed for the robustness of the hierarchical Bayesian

hyper priors will get approximate RMSEs.

5. Application to real life data

In this section, we present a real dataset to further illustrate the
performance of the method proposed in this article. The dataset is the
results of tests on endurance of deep groove ball bearings.

For illustrative the purposes, we applied the real dataset of 23 ob-
served failure times that was initially reported in Lieblein and Zelen
[13] and later by a number of authors including Abouammoh and
Alshingiti [1] and Krishna and Kumar [10]. Deya et al. [7] indicated
that Weibull distribution fits this dataset better than the exponential,
inverted exponential and gamma distribution. The following dataset
represents the number of millions of revolutions before failure for
each of the 23 ball bearings in a life test.
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Table 4. Average values of the estimators and the corresponding RMSEs based on real data and x = 50

RC Scheme MLEs Bayesian estimates Hierarchical Bayesian estimates
8 R(x) A Ry(x) M Ry(x) %) Ry(x) L% Ry(x)
Estimates 8.9646e-7  0.7961  7.0363e-7  0.8363  7.4272e-7 0.8363  7.0357e-7 0.8362  7.0363e-7  0.8363
RMSEs 43901e-4  0.0319  1.5265e-7  0.0303 1.6113e-7 0.0313  1.5364e-7 0.0313  1.5265e-7 0.0314

17.88, 28.92, 33.0, 41.52, 42.12, 45.60, 48.40, 51.84, 51.96,
54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12,93.12, 98.64,
105.12, 105.84, 127.92, 128.04, 173.4.
. DAeya et al.[7] obtained the MLEs of the parameters as:

(o, A)=(3.1835, 1.4329¢ - 6) based on hybrid censored sample
generated from the same dataset. In our study, we generate a progres-

sively type-1I censored sample from the above dataset, with m =19,
n =23 and the censoring scheme Rz =2, R;; =1, R;=1, R; =0,
i=8, 11, 17, and is denoted scheme RC. For computing different
estimators, we assume that « =3.1835; a=b=0; c=0, d =20
. We used the same 1000 replicates to compute different estimates
and RMSEs for this scheme. The results of the MLEs, Bayesian es-
timates and hierarchical Bayesian estimates are reported in Table 4.
The estimates results show that the Bayesian estimators are better
than the hierarchical Bayesian estimators which in turn is better than
the MLEs (in terms of RMSESs), as expected.

6. Conclusion

This paper takes into account the estimates of the unknown pa-
rameter and reliability function of Weibull distribution when the data
are progressively type-II censored. The maximum likelihood estima-
tion is considered as a part of frequentist statistics. The Bayesian
inference of the unknown parameter and reliability function based
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