PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Morphology of aluminium with nickel addition on sand casting process

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This research aimed to examine the morphology, elemental changes, and phase in the aluminium cast alloys with variations in nickel addition of 1%, 2% and 3%. Design/methodology/approach: Aluminium 98% was melted in sand casting process. The sand casting process was operated at 7000C and atmospheric pressure. The addition of nickel contain of 92.19% of its element. Specimens consist of 4 pieces Al-Ni with the size of 1 x 1 x 0.5 cm for morphological testing, while for phase identification testing consist of 4 pieces Al-Ni with the size of 1 x 1 x 2 cm. The morphological testing was performed using FEI Inspect S50 Scanning Electron Microscope (SEM) and the phase characterisation was conducted using Nikon ME5 Optical Microscope. Findings: The results showed that the addition of 1% nickel in the aluminium cast product could affect the morphology in granular shape with as similar size, at 2% nickel addition also has granular shape, while at 3% of nickel addition, the morphology of Al-Ni was in elongated shape. Phase identification of Al-Ni cast alloy shows that there were Al matrix with nickel that spread in grain boundary of Al. By increasing the percentage of nickel, it shows that the nickel dominated the grain boundary of Al. These results shows that Al-Ni alloy can be produced at simple route on sand casting process. Research limitations/implications: Sand casting process with 80% silica sand, 10% bentonite, 5% water. Raw material of aluminium contains of 92-99% of purity. Nickel as addition element contain of 90-92% purity. Practical implications: The addition of nickel should be prepared wisely in term of the calculation of alloying treatment because it will effect the mechanical properties of Al alloy itself. This research can be improved by varying the temperature of casting process, variation of nickel percentage, and observation of mechanical properties of Al-Ni alloy. Originality/value: Simple route of making Al-Ni alloy using sand casting method in laboratory and also the observation of nickel addition in aluminium matrix as the result of casting product.
Słowa kluczowe
EN
PL
Rocznik
Strony
13--17
Opis fizyczny
Bibliogr. 8 poz., rys.
Twórcy
  • Mechanical Engineering Department, Engineering Faculty, State University of Malang, Semarang street No. 5, Malang, East Java, Indonesia, 65142
autor
  • Mechanical Engineering Department, Engineering Faculty, State University of Malang, Semarang street No. 5, Malang, East Java, Indonesia, 65142
autor
  • Mechanical Engineering Department, Engineering Faculty, University Technology Petronas, Bandar Seri Iskandar, Tronoh, Perak, Malaysia, 32610
autor
  • Mechanical Engineering Department, Engineering Faculty, University Technology Petronas, Bandar Seri Iskandar, Tronoh, Perak, Malaysia, 32610
  • Mechanical Engineering Department, Engineering Faculty, University Technology Petronas, Bandar Seri Iskandar, Tronoh, Perak, Malaysia, 32610
Bibliografia
  • [1] M. Indriyati, Effect of Addition of Phosphorus Modifier to Micro Structure and Mechanical Properties of Aluminum Alloys AC*A Hypereutectic, Universitas Indonesia, 2008.
  • [2] H.T. Naeem, K.S. Mohamed, K.R. Ahmad, A. Rahmat, The Influence of Nickel and Tin Additives on the Microstructural and Mechanical Properties or AI-Zn-Mg-Cu Alloys. Advances in Materials Science and Engineering 2014 (2014) article ID 686474, 10 pages, doi: http://dx.doi.org/10.1155/2014/686474.
  • [3] X.G. Dong, J. Zhou, Y-J. Jia, B. Liu, Effect of Alloying on High Temperature Fatigue Performance of ZL114A (AI-7Si) Alloy, Transaction of Nonferrous Metals Society of China 22/s3 (2012) s661-s667. doi:10.1016/S1003-6326(12)61782-8.
  • [4] A. Maznoy, Combustion Synthesis and Characterization of Porous Ni-Al Materials for Metal-Supported Solid Oxide Fuel Cells Application, Journal of Alloys and Compounds 697 (2017) 114-123, doi: https://doi.org/10.1016/j.jallcom.20 16.11.350.
  • [5] A.A. Rammelyadi, Aluminum-Iron-Nickel Alloy Alloy as High Density Burning Element Cladding, Institut Pertanian Bogor, 2008.
  • [6] F. Hernandez-Mendez, A. Altamirano-Torres, J.G. Miranda-Hernández, E. Térres-Rojas, E. Rocha-Rangel, Effect of nickel addition on microsturcture and mechanical properties of aluminium-based allloys, Material Science Forum 691 (2011) 10-14. doi: https://doi.org/10.4028/www.scientific.net/MSF.691.10.
  • [7] M. Kartaman, M.H. AI Hasa, A. Paid, Effect of heat treatment on the properties of aluminum fero nickel alloy, Urania 19/2 (2013) 109-118 (in Indonesian).
  • [8] R. Offoiach, M. Lekka, A. Lanzutti, C.de Leitenburg, L. Fedrizzi, Production and microstructural characterization of Ni matrix composite electrodeposits containing either micro- or nano-particles of Al, Surface and Coatings Technology 309 (2017) 242-248, doi: https://doi.org/10.1016/j.surfcoat.2016.11.082.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5dadecd-396f-4433-b943-e85643b96930
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.