Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The reaction of alkalis with aggregate containing reactive forms of silica (ASR) plays a significant role in shaping the durability of concrete, as the strongly hygroscopic reaction products generated lead to internal stress, causing its expansion and cracking. This study presents an extended analysis of corrosive processes occurring in mortars with reactive natural aggregate from Poland, using computed tomography and scanning microscopy methods. Numerous cracks in the grains and the surrounding cementitious matrix were observed, indicating a high degree of advancement of corrosive processes. Over time, the proportion of pores with reduced sphericity increased, indicating ongoing degradation of the mortars. The usefulness of computed tomography in studying the progress of ASR was demonstrated. Scanning microscopy confirmed that the cause of mortar degradation is the formed ASR gel with a typical composition, located within the volume of reactive grains, cracks propagating into the cementitious matrix, and accumulated in air voids.
Rocznik
Tom
Strony
art. no. e149814
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Faculty of Civil Engineering and Architecture, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Bibliografia
- [1] T.E. Stanton, “Influence of cement and aggregate on concrete expansion,” Eng. News-Rec., vol. 124, pp. 171–173, 1940.
- [2] F. Rajabipour, E. Giannini, C. Dunant, J.H. Ideker, M.D.A. Thomas, “Alkali–silica reaction: Current understanding of the reaction mechanisms and the knowledge gaps,” Cem. Concr. Res., vol. 76, pp. 130–146, 2015, doi: 10.1016/j.cemconres.2015.05.024.
- [3] A.B. Poole, “Introduction to alkali–aggregate reaction in concrete,” in: The Alkali Silica Reaction in Concrete, R.N. Swamy (Ed.), Van Nostrand Reinhold, New York, 1992.
- [4] M.A.T.M. Broekmans, “Structural properties of quartz and their potential role for ASR,” Mater. Charact., vol. 53, no 2–4, pp. 129–140, 2004, doi: 10.1016/j.matchar.2004.08.010.
- [5] R.C. Mielenz, “Petrographic examination (Mineral aggregates),” ASTM STP 169B, pp. 539–572, 1978.
- [6] L.M. Dolar, Handbook of concrete aggregates: A petrographic and technological evaluation. Noyes Publications: Park Ridge, N.J. p. 345, 1983.
- [7] NRMCA “Guide specifications for concrete subject to alkali-silica reactions,” Mid-Atlantic Regional Technical Committee, (Available through NRMCA, Silver Spring, Maryland), 1993.
- [8] M. Ratnam, Monograph on Alkali Aggregate Reaction. Central Soil & Materials Research Station, New Delhi, 2008.
- [9] J. Zapała-Sławeta and Z. Owsiak, “Effect of lithium nitrate on the reaction between opal aggregate and sodium and potassium hydroxides in concrete over a long period of time,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 6, pp. 773–778, 2017, doi: 10.1515/bpasts-2017-0085.
- [10] H. Maraghechi, S. Shafaatian, G. Fischer, and F. Rajabipour, “The role of residual cracks on alkali silica reactivity of recycled glass aggregates,” Cem. Concr. Compos., vol. 34, pp. 41–47, 2012, doi: 10.1016/j.cemconcomp.2011.07.004.
- [11] Z. Owsiak, J. Zapała-Sławeta, and P. Czapik, “Diagnosis of concrete structures distress due to alkali-aggregate reaction,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 63, no 1, pp. 23-29, 2015, doi: 10.1515/bpasts-2015-0003.
- [12] E.R. Gallyamov, A. Leemann, B. Lothenbach, and J.-F. Molinari, “Predicting damage in aggregates due to the volume increase of the alkali-silica reaction products,” Cem. Concr. Res., vol. 154, p. 106744, 2022, doi: doi: 10.1016/j.cemconres.2022.106744.
- [13] M. Shakoorioskooie, M. Griffa, A. Leemann, R. Zboray, and P. Lura, “Alkali-silica reaction products and cracks: X-ray micro-tomography-based analysis of their spatial-temporal evolution at a mesoscale,” Cem. Concr. Res., vol. 150, p. 106593, 2021, doi: 10.1016/j.cemconres.2021.106593.
- [14] P. Rivard, J.-P. Ollivier, and G. Ballivy, “Characterization of the ASR rim Application to the Potsdam sandstone,” Cem. Concr. Res., vol. 32, pp. 1259–1267, 2002, doi: 10.1016/S0008-8846(02)00765-2.
- [15] E. Ratajczyk, “Tomografia komputerowa CT w zastosowaniach przemysłowych. Cz. I Idea pomiarów, główne zespoły i ich funkcje,” Mechanik, vol. 84, no. 2, pp. 111–117, 2011.
- [16] P. Czapik, “Degradation of Glaukonite Sandstone as a Result of Alkali-Silica Reactions in Cement Mortar,” Materials, vol. 11, no. 6, p. 924, 2018.
- [17] J. Zapała-Sławeta and Z. Owsiak, “The role of lithium compounds in mitigating alkali-gravel aggregate reaction,” Constr. Build. Mater., vol. 115, pp. 299–303, 2016, doi: 10.1016/j.conbuildmat.2016.04.058.
- [18] ASTM C1260–14, Standard Test Method for Potential Reactivity of Aggregates (Mortar-Bar Method). ASTM International: West Conshohocken, PA, USA, 2014.
- [19] Z. Giergiczny et al., Wytyczne techniczne klasyfikacji kruszyw krajowych i zapobiegania reakcji alkalicznej w betonie stosowanym w nawierzchniach dróg i drogowych obiektach inżynierskich. Nowelizacja v2, 2022. [Online] Available: https://www.gov.pl/attachment/15a40897-941a-4127-8bbe-959c04e97a27
- [20] S. Kamalian, M.H. Lev, and R. Gupta, “Computed tomography imaging and angiography – principles,” Handb. Clin. Neurol., vol. 135, pp. 3–20, 2016, doi: 10.1016/B978-0-444-53485-9.00001-5.
- [21] M. Yang, S.R. Paudel, and E. Asa, “Comparison of pore structure in alkali activated fly ash geopolymer and ordinary concrete due to alkali-silica reaction using micro-computed tomography,” Constr. Build. Mater., vol. 236, p. 117524, 2020, doi: 10.1016/j.conbuildmat.2019.117524.
- [22] T. Ichikawa, “Alkali silica reaction, pessimum effects and pozzolanic effect,” Cem. Concr. Res., vol. 39, pp. 716–726, 2009, doi: 10.1016/j.cemconres.2009.06.004.
- [23] M. Regourd-Moranville, “Products of reaction and petrography examination,” in Proc. 8th ICAAR, K. Okada, Ed., Kyoto, 1989, pp. 445–456.
- [24] H. Maraghechi, F. Rajabipour, C.G. Pantano, and WD. Burgos, “Effect of calcium on dissolution and precipitation reactions of amorphous silica at high alkalinity,” Cem. Concr. Res., vol. 87, pp. 1–13, 2016, doi: 10.1016/j.cemconres.2016.05.004.
- [25] J. Kleib et al., “The use of calcium sulfoaluminate cement to mitigate the alkali silica reaction in mortars,” Constr. Build. Mater., vol. 184, pp. 295–303, doi: 10.1016/j.conbuildmat.2018.06.215.
- [26] C.F. Dunant, and K.L.Scrivener, “Effects of aggregate size on alkali-silica-reaction induced expansion,” Cem. Concr. Res., vol. 42, pp. 745–751, 2012, doi: 10.1016/j.cemconres.2012.02.012.
- [27] H.E. Vivian, “The mechanism of alkali-aggregate reaction in concrete,” in Proc. 9th ICAAR, A.B. Poole, Ed., London, 1992, pp. 1085–1089,
- [28] R.F. Bleszynski and M.D.A. Thomas, “Microstructural studies of alkali-silica reaction in fly ash concrete immersed in alkaline solutions,” Adv. Cem. Based Mater., vol. 7, pp. 66–78, 1998, doi: 10.1016/S1065-7355(97)00030-8.
- [29] T. Miura, S. Multon, and Y. Kawabata, “Influence of the distribution of expansive sites in aggregates on microscopic damage caused by alkali-silica reaction: Insights into the mechanical origin of expansion,” Cem. Concr. Res., vol. 142, p. 106355, 2021, doi: 10.1016/j.cemconres.2021.106355.
- [30] Z. Owsiak, P. Czapik, J. Zapała-Sławeta, “Methods of mitigating alkali reactvity of gravel aggregate,” Struct. Environ., vol. 14, no. 3, pp. 102–109, doi: 10.30540/sae-2022-013.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5da01b9-acd4-4d9e-abe4-00e29851703b