PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CFD estimation of heat losses in thermal conductivity measurements

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Knowledge of a material thermal conductivity is essential in several engineering applications. This material property serves also as a measure of the quality of manufactured materials. Nowadays, a lot of effort is directed into development of non-destructive, fast and reliable measurement techniques. In the works of Adamczyk et al. [1] and Kruczek et al. [10], a new in situ conductivity measurement technique for an anisotropic material was developed. This method, due to its rapidity and nondestructive character, can be embedded in a manufacturing process. However, despite many advantages, the developed measuring technique has some drawbacks corresponding to the applied mathematical model, which is used for determining the material thermal conductivities. It neglects the effect of heat losses due to radiation and convection phenomena on the calculated values of thermal conductivities. In this work, the computational fluid dynamic (CFD) modeling was applied to estimate heat losses due to radiation and convection. The influence of omitting the radiative and convective heat transfer on the predicted temperature field and calculated thermal conductivities was investigated. Evaluated numerical results were compared against experimental data by using the developed in situ measurement technique for the thermal conductivity of anisotropic materials.
Rocznik
Strony
185--194
Opis fizyczny
Bibliogr. 13 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Thermal Technology, Silesian University of Technology, Konarskiego 22 44-100 Gliwice, Poland
  • Institute of Thermal Technology, Silesian University of Technology, Konarskiego 22 44-100 Gliwice, Poland
autor
  • Institute of Thermal Technology, Silesian University of Technology, Konarskiego 22 44-100 Gliwice, Poland
autor
  • Institute of Thermal Technology, Silesian University of Technology, Konarskiego 22 44-100 Gliwice, Poland
autor
  • Institute of Thermal Technology, Silesian University of Technology, Konarskiego 22 44-100 Gliwice, Poland
Bibliografia
  • [1] W.P. Adamczyk, T. Kruczek, R.A. Bialecki. 6th European Congress on Computational Methods in AppliedSciences and Engineering, ECCOMAS 2012, 9046, 2012.
  • [2] ANSYS, Inc., 2012, available online: http://www.ansys.com.
  • [3] T. Baba, A. Ono. Improvement of the laser flash method to reduce uncertainty in thermal diffusivity measurements. Meas. Sci. Technol., 12: 2046, 2001.
  • [4] R.A. Bialecki, Z. Buliski. Green’s Function in Transient Heat Conduction. In Encyclopedia of Thermal Stress,ed. by R.H. Hetnarski, Springer, Berlin 2013 (in press).
  • [5] W. Buck, S. Rudtsch. Thermal properties. In Springer Handbook of Material Measurements, ed. by H. Czichos,T. Saito, L. Smith, Springer, Heidelberg 2006.
  • [6] Y.A. Cengel, A.J. Ghajar. Heat and mass transfer: fundamentals and applications. Mc Graw- Hill, 4th edition 2011.
  • [7] F. Cernuschi, P.G. Bison, A. Figari, S. Marinetti, E. Grinzato. Thermal Diffusivity Measurements by Photothermal and Thermographic Techniques. Int. J. Thermophys., 25(2): 439–457, 2004
  • [8] K.D. Cole, A. Haji Sheikh, J.V. Beck, B. Litkouhi. Heat Conduction Using Green’s Function. CRC Press, Taylorand Francis Group, Boca Raton, 2011.
  • [9] D. Demange P. Beauchene, M. Bejet, R. Casulleras. Simultaneous measurement of thermal diffusivity in themain directions of a material [in French]. Revue Gen. Thermique, 36(10): 755–770, 1997.
  • [10] T. Kruczek, W.P. Adamczyk, R.A. Bialecki. In Situ Measurement of Thermal Diffusivity in Anisotropic Media.Int. J. of Thermophys., 34(3): 467–485 2013.
  • [11] H.R.B. Orlande, M.N Ozisik. Inverse heat transfer: fundamentals and applications. Taylor and Francis, NewYork, 2000.
  • [12] W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott. Method of Determining Thermal Diffusivity, Heat Capacityand Thermal Conductivity. Journal of Applied Physics, 32(9): 1679, 1961. doi: 10.1063/1.1728417.
  • [13] W.H. Press, S.A. Teukolsky, W.T, Vetterling, B.P. Flannery. Numerical Recipes. Cambridge, Cambridge University Press, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5d5c50a-5a5b-4438-b72e-67cad82897ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.