PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Image reconstruction in ultrasound transmission tomography using the Fermat’s Principle

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Rekonstrukcja obrazu w ultradźwiękowej tomografii transmisyjnej z wykorzystaniem zasady Fermata
Języki publikacji
EN
Abstrakty
EN
The article presents image reconstruction in ultrasonic transmission tomography using the Fermat principle. The application consists of an ultrasound tomograph built by the authors and an algorithm implemented to solve the problem of image reconstruction. The solution enables the analysis of processes taking place in the facility without interference. The obtained tomographic imaging can be a picture of the geometry of the examined area. This allows location in the analysed area. The work developed an algorithm based on the Fermat principle as a technique of low computational complexity for real-time image reconstruction using an ultrasound tomograph.
PL
W artykule przedstawiono rekonstrukcja obrazu w ultradźwiękowej tomografii transmisyjnej z wykorzystaniem zasady Fermata. Aplikacja składa się z tomografu ultradźwiękowego zbudowanego przez autorów oraz zaimplementowane algorytmu do rozwiązywania zagadnienia rekonstrukcji obrazu. Rozwiązanie umożliwia analizę procesów zachodzących w obiekcie bez ingerencji. Uzyskane obrazowanie tomograficzne może być obrazem geometrii badanego obszaru. Pozwala to na lokalizację w analizowanym obszarze. W pracy opracowano algorytm oparty na zasadzie Fermata jako technice o niskiej złożoności obliczeniowej do rekonstrukcji obrazu w czasie rzeczywistym za pomocą tomografu ultradźwiękowego.
Rocznik
Strony
186--189
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
autor
  • University of Economics and Innovation, Projektowa 4, Lublin, Poland
  • Research & Development Centre Netrix S.A.
autor
  • University of Economics and Innovation, Projektowa 4, Lublin, Poland
  • Research & Development Centre Netrix S.A.
  • University of Economics and Innovation, Projektowa 4, Lublin, Poland
  • Research & Development Centre Netrix S.A.
  • University of Economics and Innovation, Projektowa 4, Lublin, Poland
  • Research & Development Centre Netrix S.A.
  • Research & Development Centre Netrix S.A.
Bibliografia
  • [1] Kania K., Rymarczyk T., Maj M., Golabek M., Implementation of fermat's principle for detection of anomalies in ultrasound transmission tomography, 2019 Applications of Electromagnetics in Modern Engineering and Medicine, PTZE 2019, 2019, 67-71
  • [2] Goetzke-Pala A., Hoła A., Sadowski Ł., A non-destructive method of the evaluation of the moisture in saline brick walls using artificial neural networks. Archives of Civil and Mechanical Engineering, 18 (2018), No 4, 1729-1742.
  • [3] Fiala P., Drexler P., Nešpor D., Szabó Z., Mikulka J., Polívka J., The Evaluation of Noise Spectroscopy Tests, ENTROPY, 18 (2016), No. 12, 1-16.
  • [4] Krawczyk A., Korzeniewska E., Łada-Tondyra, E. Magnetophosphenes - History and contemporary implications, Przeglad Elektrotechniczny, 94 (2018), No 1, 61-64.
  • [5] Korzeniewska E., Walczak M., Rymaszewski J., Elements of Elastic Electronics Created on Textile Substrate, Proceedings of the 24th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2017, 2017, 447-45.
  • [6] Lopato P., Chady T., Sikora R., Ziolkowski M., Full wave numerical modelling of terahertz systems for nondestructive evaluation of dielectric structures, 32 (2013), No. 3, 736 - 749.
  • [7] Psuj G., Multi-Sensor Data Integration Using Deep Learning for Characterization of Defects in Steel Elements, Sensors, 18 (2018), No. 1, 292.
  • [8] Szczęsny A., Korzeniewska E., Selection of the method for the earthing resistance measurement, Przegląd Elektrotechniczny, 94 (2018), No. 12, 178-181.
  • [9] Valis D., Mazurkiewicz D., Application of selected Levy processes for degradation modelling of long range mine belt using real-time data, Archives of Civil and Mechanical Engineering, 18 (2018), No. 4, 1430-1440.
  • [10] Valis D., Mazurkiewicz D., Forbelska M., Modelling of a Transport Belt Degradation Using State Space Model, Conference: IEEE International Conference on Industrial Engineering and Engineering Management (IEEE IEEM)Location: Singapore, Dec. 10-13, 2017, Book Series: International Conference on Industrial Engineering and Engineering Management IEEM, 2017, 949-953.
  • [11] Ziolkowski M., Gratkowski S., and Zywica A. R., Analytical and numerical models of the magnetoacoustic tomography with magnetic induction, COMPEL - Int. J. Comput. Math. Electr. Electron. Eng., 37 (2018), No. 2, 538-548.
  • [12] Kozłowski E., Mazurkiewicz D., Żabiński T., Prucnal S., Sęp J., Assessment model of cutting tool condition for real-time supervision system, Eksploatacja i Niezawodnosc - Maintenance and Reliability, 21 (2019); No 4, 679-685.
  • [13] Vališ D, Hasilová K., Forbelská M, Vintr Z, Reliability modelling and analysis of water distribution network based on backpropagation recursive processes with real field data, Measurement 149 (2020), 107026.
  • [14] Galazka-Czarnecka, I.; Korzeniewska E., Czarnecki A. et al., Evaluation of Quality of Eggs from Hens Kept in Caged and Free-Range Systems Using Traditional Methods and Ultra- Weak Luminescence, Applied sciences-basel, 9 (2019), No. 12, 2430.
  • [15] Babout L., Grudzień K., Wiącek J., Niedostatkiewicz M., Karpiński B., and Szkodo M., Selection of material for X-ray tomography analysis and DEM simulations: comparison between granular materials of biological and non-biological origins, Granul. Matter, 20 (2018), No. 3, 38.
  • [16] Chaniecki Z., Romanowski A., Nowakowski J., Niedostatkiewicz M., Application of twin-plane ECT sensor for identification of the internal imperfections inside concrete beams Grudzien, IEEE Instrumentation and Measurement Technology Conference, 2016, 7520512.
  • [17] Herman G.T., Image Reconstruction from Projections: The Fundamentals of Computerized Tomography, Academic Press, New York, 1980.
  • [18] Holder D., Introduction to biomedical electrical impedance tomography Electrical Impedance Tomography Methods, History and Applications, Bristol, Institute of Physics, 2005.
  • [19] Karhunen K., Seppänen A., Lehikoinen A., Monteiro P. J., and Kaipio J. P., Electrical Resistance Tomography Imaging of Concrete, Cement and Concrete Research, 40 (2010), 137- 145.
  • [20] Gudra T., Opieliński K.J., The multi-element probes for ultrasound transmission tomography, Journal de Physique 4, 137 (2006), 79-86.
  • [21] Jiang Y., Soleimani M., Wang B., Contactless electrical impedance and ultrasonic tomography, correlation, comparison and complementary study, Measurement Science and Technology, 30 (2019), 114001.
  • [22] Kaczmarz S., Angenäherte Auflösung von Systemen Linearer Gleichungen, Bull. Acad. Polon. Sci. Lett. A, 6-8A (1937), 355- 357.
  • [23] Kak A.C., Slaney M., Principles of Computerized Tomographic Imaging, IEEE Press, New York, 1999.
  • [24] Nityananda R., Samuel J., Fermat's principle in general relativity, Physical review D: Particles and fields, June 1992.
  • [25] Polakowski K., Sikora J., Podstawy matematyczne obrazowania ultradźwiękowego, Politechnika Lubelska, Lublin, 2016.
  • [26] Kryszyn J., Wanta D. M., Smolik W. T., Gain Adjustment for Signal-to-Noise Ratio Improvement in Electrical Capacitance Tomography System EVT4, IEEE Sens. J., 17 (2017), No. 24, 8107-8116.
  • [27] Kryszyn J., Smolik W., Toolbox for 3d modelling and image reconstruction in electrical capacitance tomography, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska (IAPGOŚ) , 7 (2017), No. 1, 137-145.
  • [28] Majchrowicz M., Kapusta P., Jackowska-Strumiłło L., Sankowski D., Optimization of Distributed Multi-node, Multi- GPU, Heterogeneous System for 3D Image Reconstruction in Electrical Capacitance Tomography, Image processing & communications, 21 (2016), No. 3, 2016, 81-90.
  • [29] Nowakowski J., Ostalczyk P., Sankowski D., Application of fractional calculus for modelling of two-phase gas/liquid flow system, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska (IAPGOŚ) , 7 (2017), No. 1, 42-45.
  • [30] Romanowski A., Contextual Processing of Electrical Capacitance Tomography Measurement Data for Temporal Modeling of Pneumatic Conveying Process, 2018 Federated Conference on Computer Science and Information Systems (FedCSIS), IEEE, 2018, 283-286.
  • [31] Rymarczyk T, Kłosowski G. Innovative methods of neural reconstruction for tomographic images in maintenance of tank industrial reactors. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 21 (2019); No. 2, 261-267
  • [32] Rymarczyk, T.; Kozłowski, E.; Kłosowski, G.; Niderla, K. Logistic Regression for Machine Learning in Process Tomography, Sensors, 19 (2019), 3400.
  • [33] Rymarczyk T., Szumowski K., Adamkiewicz P., Tchórzewski P., Sikora J., Moisture Wall Inspection Using Electrical Tomography Measurements, Przegląd Elektrotechniczny, 94 (2018), No 94, 97-100
  • [34] Duda K., Adamkiewicz P., Rymarczyk T., Niderla K., Nondestructive Method to Examine Brick Wall Dampness, International Interdisciplinary PhD Workshop Location: Brno, Czech Republic Date: SEP 12-15, 2016, 68-71
  • [35] Rymarczyk T., Nita P., Vejar A., Stefaniak B., Sikora J., Electrical tomography system for Innovative Imaging and Signal Analysis, Przegląd Elektrotechniczny, 95 (2019), No 6, 133-136
  • [36] Soleimani M., Mitchell CN, Banasiak R., Wajman R., Adler A., Four-dimensional electrical capacitance tomography imaging using experimental data, Progress In Electromagnetics Research, 90 (2009), 171-186.
  • [37] Wajman R., Fiderek P., Fidos H., Sankowski D., Banasiak R., Metrological evaluation of a 3D electrical capacitance tomography measurement system for two-phase flow fraction determination, Measurement Science and Technology, 24 (2013), No. 6, 065302.
  • [38] Wang M., Industrial Tomography: Systems and Applications, Elsevier, 2015.
  • [39] Ye Z., Banasiak R., Soleimani M., Planar array 3D electrical capacitance tomography, Insight: Non-Destructive Testing and Condition Monitoring, 55 (2013), No. 12, 675-680
  • [40] Romanowski, A.; Łuczak, P.; Grudzień, K. X-ray Imaging Analysis of Silo Flow Parameters Based on Trace Particles Using Targeted Crowdsourcing, Sensors, 19 (2019), No. 15, 3317.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5cde2e5-31ae-4a12-aead-3707b75beb4d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.