PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Power modulated temperature sensor with inscribed fibre Bragg gratings

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Fibre Bragg Grating (FBG) based temperature optical sensor has been designed and demonstrated. FBGs have been modelled and fabricated so as to convert the Bragg wavelength shift into the intensity domain. The main experimental setup consists of a filtering FBG and two scanning FBGs, respectively, left and right scanning FBG, whereby scanning FBGs are symmetrically located on the slopes of the filtering FBG. Such an approach allows for the modulation of power for the propagating optical signal depending on the ambient temperature at the scanning FBG location. A positive or negative change of power is determined by the spectral response of the FBG. Experimental research of the scanning FBGs’ sensitivities emphasized that the key issue is the filtering FBG. A different level of sensitivity could be achieved due to the spectral characteristic of the filtering FBG. Omitting advanced and high-cost devices, the FBG-based temperature sensor is presented. The FBG-based sensor setup could yield resolution of 1°C for the range of temperature 0.5°C to 52.5°C. The experimental study has been performed as a base for an easy-placed sensor system to monitor external parameters in real environment.
Twórcy
autor
  • Faculty of Electronics, Wrocław University of Technology, ul. Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Institute of Electronic Systems, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa, Poland
  • Institute of Electronic Systems, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa, Poland
  • Faculty of Electronics, Wrocław University of Technology, ul. Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • 1. S. Yin, P.B. Ruffin, and F.T.S. Yu, Fiber Optic Sensors, CRC Press, Boca Raton, 2008.
  • 2. K. Grobe and M. Eiselt, Wavelength Division Multiplexing: A Practical Engineering Guide, John Wiley & Sons, Inc., New Jersey, 2014.
  • 3. M. Sumetsky and B.J. Eggleton, “Fiber Bragg gratings for dispersion compensation in optical communication systems”, J. Opt. Fiber Commun. Reports 2, 256–278 (2005).
  • 4. G. Buyin, Y. OuYang, Y. Ma J. Chang, C. Liu, and J. Yang, “Tradeoff on gain-flatness and gain-stabilization of erbium doped fiber amplifier with FBGs”, Proc. SPIE 9233, 92331I-1-92331I-4 (2014).
  • 5. T. Osuch, P. Gąsior, K. Markowski, and K. Jędrzejewski, “Development of fiber Bragg gratings technology and their complex structures for sensing, telecommunications and microwave photonics applications”, Bulletin of the Polish Academy of Sciences. Technical Sciences 62, 627–633 (2014).
  • 6. K. Madziar, B. Galwas, and T. Osuch, “Fiber Bragg gratings based tuning of an optoelectronic oscillator”, Proc. IEEE MIKON, 1–4 (2014).
  • 7. K. Madziar, B. Galwas, and T. Osuch, “Optoelectronic comb oscillators with FBG based frequency control”, Proc. IEEE GeMiC, 347–350 (2015).
  • 8. C. Lee, J. Lee, M. Kim, and K.T. Kim, “Characteristics of a fiber Bragg grating temperature sensor using the thermal strain of an external tube”, J. Korean Physical Society 59, 3188–3191 (2011).
  • 9. Y. Zhao, H. Huang, and Q. Wang, “Interrogation technique using a novel spectra bandwidth measurement method with a blazed FBG and a fiber-optic array for an FBG displacement sensor”, Sensor Actuat. A - Phys. 165, 185–188 (2011).
  • 10. Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber”, IEEE Photon. Techn. Lett. 24, 1519–1522 (2012).
  • 11. X. Dong, H. Zhang, B. Liu, and Y. Miao, “Tilted fiber Bragg gratings: principle and sensing applications”, Photon. Sensor 1, 6–30 (2011).
  • 12. T. Wang, Z. Yuan, Y. Gong, Y. Wu, Y. Rao, L. Wei, P. Guo, J. Wang, and F. Wan, “Fiber Bragg grating strain sensors for marine engineering”, Photonic Sensors 3, 267–271 (2013).
  • 13. T. Osuch, T. Kossek, and K. Markowski, “Impact of fiber ring laser configuration on detection capabilities in FBG based sensor systems”, Proc. SPIE 9290, 92900Y-1-92900Y-7, (2014).
  • 14. C. Crunelle, C. Caucheteur, M. Wuilpart, and P. Mégret, “Quasi-distributed temperature sensor combining FBGs and temporal reflectometry technique interrogation”, Opt. Lasers Engin. 47, 412–418 (2009).
  • 15. Y.N. Kulchin, O.B. Vitrik, A.V. Dyshlyuk, A.M. Shalagin, S.A. Babin, and A.A. Vlasov, “An interrogation technique for fiber Bragg grating sensors based on optical time domain reflectometry”, Optoelectronics, Instrumentation and Data Processing 44, 178–182 (2008).
  • 16. Y.-L. Lo and S.-H. Xu, “New sensing mechanisms using an optical time domain reflectometry with fiber Bragg gratings”, Sensor Actuat. A-Phys. 136, 238–243 (2007).
  • 17. S. Daud, M.A. Jalil, S. Najmee, S. Saktioto, J. Ali, and P.P. Yupapin, “Development of FBG sensing system for outdoor temperature environment”, Proc. Engineering 8, 386–392 (2010).
  • 18. J.K. Pan and S.J. Choi, “Fiber-optic sensor device”, Application Patent, US20140299753 A1, (2014).
  • 19. M. Mądry and E. Bereś-Pawlik, “Sensor monitoring system with embedded FBGs”, Proc. IEEE ICTON 2014, Graz, 1–4, (2014).
  • 20. B. Varghese P,D. Kumar R., M. Raju, Varghese, and K.N. Madhusoodanan, “Implementation of interrogation systems for fiber Bragg grating sensors”, Photon. Sensor 3, 283–288 (2013).
  • 21. A.B. Lobo Ribeiro, L.A. Ferreira, J.L. Santos, and D.A. Jackson, “Analysis of the reflective-matched fiber Bragg grating sensing interrogation scheme”, Appl. Opt. 36, 934–939 (1997).
  • 22. E. Bereś-Pawlik and M. Mądry, “Fibre setup for monitoring changes of physical parameters of materials”, Polish Patent Application, P.413787, (2015).
  • 23. T. Osuch, P. Gąsior, and L. Lewandowski, “System for modification of exposure time in fiber Bragg gratings fabrication with using scanning phase mask method”, Proc. SPIE 5775, 222–226, (2005).
  • 24. T. Osuch, K. Jędrzejewski, L. Lewandowski, and W. Jasiewicz, “Shaping the spectral characteristics of fiber Bragg gratings written in optical fiber taper using phase mask method”, Photon. Lett. Poland 4, 128–130 (2012).
  • 25. R. Kashyap, Fiber Bragg Gratings, Academic Press, San Diego, 1999.
  • 26. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing, Artech House: London, 1999.
  • 27. M. Mądry and E. Bereś-Pawlik, “Theoretical investigation of temperature optical sensor setup with spectrally adjusted fiber Bragg gratings”, Proc. SPIE 9816, 98160W-1-98160W-5, (2015).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5c7d7e2-2846-427e-83aa-ed4a55af05fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.