PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exact solution of a nonlinear heat conduction problem in a doubly periodic 2D composite material

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An analytic solution of a stationary heat conduction problem in an unbounded doubly periodic 2D composite whose matrix and inclusions consist of isotropic temperature-dependent materials is given. Each unit cell of the composite contains a finite number of circular non-overlapping inclusions. The corresponding nonlinear boundary value problem is reduced to a Laplace equation with nonlinear interface conditions. In the case when the conductive properties of the inclusions are proportional to that of the matrix, the problem is transformed into a fully linear boundary value problem for doubly periodic analytic functions. This allows one to solve the original nonlinear problem and reconstruct temperature and heat flux throughout the entire plane. The solution makes it possible to calculate the average properties over the unit cell and discuss the effective conductivity of the composite. We compare the outcomes of the present paper with a few results from literature and present numerical examples to indicate some peculiarities of the solution.
Rocznik
Strony
157--178
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
  • A. Razmadze Mathematical Institute Tbilisi State University Georgia
autor
  • Aberystwyth University, UK and Rzeszów University of Technology, Poland
  • A. Razmadze Mathematical Institute Tbilisi State University Georgia
Bibliografia
  • 1. V. Kushch, Micromechanics of composites: multipole expansion approach, Butterworth-Heinemann, Amsterdam, 2013.
  • 2. V. Mityushev, Zastosowanie równań funkcyjnych do wyznaczania efektywnej przewodności cieplnej materiałów kompozytowych (Application of functional equations to the effective thermal conductivity of composite materials), WSP Publisher, Słupsk, 1996 [in Polish].
  • 3. L. Berlyand, V.V. Mityushev, Generalized Clausius–Mossotti formula for random composite with circular fibers, J. Statistical Physics, 102, 115–145, 2001.
  • 4. V.V. Mityushev, E.V. Pesetskaya, S.V. Rogosin, Analytical methods for heat conduction in composites and porous media, [in:] Cellular and Porous Materials: Thermal Properties Simulation and Prediction. A. Öchsner, G.E. Murch, M.J.S. de Lemos [Eds.], 121–164, Wiley, 2008.
  • 5. D. Kapanadze, G. Mishuris, E. Pesetskaya, Improved algorithm for analytical solution of the heat conduction problem in composites, Complex Variables and Elliptic Equations, 60, 1, 1–23, 2015.
  • 6. R.V. Craster, Y.V. Obnosov, A model four-phase square checkerboard structure, Quarterly J. Mechanics and Applied Mathematics, 59, 1–27, 2006.
  • 7. G.W. Milton, The Theory of Composites, Cambridge University Press, Cambridge, 2002.
  • 8. M. Kachanov, I. Sevostianov, On quantitative characterization of microstructures and effective properties, Int. J. Solids and Structures, 42, 309–336, 2005.
  • 9. A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Elsevier, Amsterdam, 1978.
  • 10. N.S. Bakhvalov, G. Panasenko, Homogenisation: averaging processes in periodic media, Mathematical Problems in the Mechanics of Composite Materials, Mathematics and Its Applications: Soviet Series, 36, Kluwer Academic Publishers, Dordrecht, 1989.
  • 11. Eh.I. Grigolyuk, L.A. Fil’shtinskij, Periodic Piecewise Homogeneous Elastic Structures, Nauka, Moscow, 1992 [in Russian].
  • 12. S.K. Kanaun, V.M Levin, Effective field method in mechanics of composite materials, University of Petrozavodsk, 1993.
  • 13. V.V. Jikov, S.M. Kozlov, O.A. Olejnik, Homogenization of Differential Operators and Integral Functionals, Springer, Berlin, 1994.
  • 14. M. Kachanov, Elastic solid with many cracks and related problems, Advances in Applied Mechanics, 30, 259–445, 1994.
  • 15. I. Sevostianov, M. Kachanov, Connections between elastic and conductive properties of heterogeneous materials, Advances in Applied Mechanics, 42, 69–253, 2008.
  • 16. L. Greengard, J. Helsing, On the numerical evaluation of the elastostatic fields in locally isotropic two-dimensional composites, J. Mechanics and Physics of Solids, 43, 1919–1951, 1998.
  • 17. T.I. Zohdi, P. Wriggers, Introduction to Computational Micromechanics, Springer, New York, 2005.
  • 18. P. Fedelinski, R. Gorski, T. Czyz, G. Dziatkiewicz, J. Ptaszny, Analysis of effective properties of materials by using the boundary element method, Archives of Mechanics, 66, 1, 19–35, 2014.
  • 19. P.M. Hui, P. Cheung, Y.R. Kwong, Effective response in nonlinear random composites, Physica A: Statistical Mechanics and its Applications, 241, 301–309, 1997.
  • 20. P.M. Hui, W.W.V. Wan, Theory of effective response in dilute strongly nonlinear random composites, Applied Physics Letters, 69, 1810–1812, 1996.
  • 21. P.M. Hui, Y.F. Woo, W.W.V. Wan, Effective response in random mixtures of linear and nonlinear conductors, J. Physics-Condensed Matter, 7, L593–L597, 1995.
  • 22. R. Blumendeld, D.J. Bergman, Strongly nonlinear composite dielectrics: A perturbation method for finding the potential-field and bulk effective properties, Physical Review B, 44, 7378–7386, 1991.
  • 23. P. De. Ponte-Castaneda, G. Btton, G. Li, Effective properties of nonlinear inhomogeneous dielectrics, Physical Review B, 46, 4387–4394, 1992.
  • 24. A. Snarskii, S. Buda, Effective conductivity of nonlinear two-phase media near the percolation threshold, Physica A, 241, 350–354, 1997.
  • 25. A.A. Snarskii, M. Zhenirovskiy, Effective conductivity of non-linear composites, Physica B, 322, 84–91, 2002.
  • 26. B. Gambin, P. Ponte Castaneda, J.J. Telega, Nonlinear homogenization and its applications to composites, polycrystals and smart materials. Proc. NATO Adv. Res. Workshop Math., Phys. and Chem., 170, Springer, Berlin, 2005.
  • 27. A. Galka, J.J. Telega, S. Tokarzewski, Heat equation with temperature-dependent conductivity coefficients and macroscopic properties of microheterogeneous media, Mathematical and Computer Modelling, 33, 927–942, 2001.
  • 28. S. Tokarzewski, I. Andrianov, Effective coefficients for real non-linear and fictitious linear temperature-dependent periodic composites, Int. J. Non-Linear Mechanics, 36, 1, 187–195, 2001.
  • 29. S. Tokarzewski, I. Andrianov, V., Danishevsky, G. Starushenko, Analytical continuation of asymptotic expansion of effective transport coefficients by Padé approximants, Nonlinear Analysis, 47, 2283–2292, 2001.
  • 30. I. Sevostianov, G. Mishuris, Effective thermal conductivity of a composite with thermosensitive constituents and related problems, Int. J. Engineering Science, 80, 124–135, 2014.
  • 31. G.R. Kirchhoff, Theorie der wärme, Leipzig: Druck und Verlag von B.G. Teubner 1894.
  • 32. R.V. Kohn, G.W. Milton, On bounding the effective conductivity of anisotropic composites, [in:] Homogenization and Effective Moduli of Materials and Media, J.L. Ericksen,
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5c613ed-7814-4561-b694-9460f838432a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.