Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
With global life expectancy rising every year, ageing-associated diseases are becoming an increasingly important problem. Very often, successful treatment relies on early diagnosis. In this work, the issue of Parkinson's disease (PD) diagnostics is tackled. It is particularly important, as there are no certain antemortem methods of diagnosing PD - meaning that the presence of the disease can only be confirmed after the patient's death. In our work, we propose a non-invasive approach for classification of raw speech recordings for PD recognition using deep learning models. The core of the method is an audio classifier using knowledge transfer from a pretrained natural language model, namely wav2vec 2.0. The model was tested on a group of 38 PD patients and 10 healthy persons above the age of 50. A dataset of speech recordings acquired using a smartphone recorder was constructed and the recordings were labelled as PD/non-PD with the severity of the disease additionally rated using Hoehn-Yahr scale. We then benchmarked the classification performance against baseline methods. Additionally, we show an assessment of human-level performance with neurology professionals.
Czasopismo
Rocznik
Tom
Strony
art. no. 2024103
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
- AGH University of Science and Technology, Adama Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Adama Mickiewicza 30, 30-059 Kraków, Poland
autor
- Jagiellonian University, Collegium Medicum, Jakubowskiego 2, 30-688, Kraków, Poland
autor
- Jagiellonian University, Collegium Medicum, Jakubowskiego 2, 30-688, Kraków, Poland
Bibliografia
- 1. Almeida JS, Rebouças Filho PP, Carneiro T, Wei W. Detecting Parkinson’s disease with sustained phonation and speech signals using machine learning techniques. Pattern Recognition Letters 2019; 125: 55-62. https://doi.org/10.1016/j.patrec.2019.04.005.
- 2. Babenko B. Multiple instance learning: Algorithms and applications. 01 2008.
- 3. Boualoulou N, Mounia M, Nsiri B, Behoussine Drissi T. A novel Parkinson's disease detection algorithm combined EMD, BFCC, and SVM classifier. Diagnostyka. 2023; 24(4): 2023404. https://doi.org/10.29354/diag/171712.
- 4. Chronowski M, Kłaczyński M, Dec-Ćwiek M. Speech and tremor tester - monitoring of neurodegenerative diseases using smartphone technology. Diagnostyka 2020;21(2):31-39. https://doi.org/10.29354/diag/122335.
- 5. Han Z, Tian R, Ren P, Zhou W, Wang P, Luo M. Parkinson’s disease and Alzheimer’s disease: a Mendelian randomization study. BMC Med Genet 2018;19. https://doi.org/10.1186/s12881-018-0721-7.
- 6. Jordal I, Nishi K, Bredin H. asteroidteam/torchaudiomentations:v0.10.1, 2022. https://doi.org/10.5281/zenodo.6381721.
- 7. Kłaczyński M. Vibroacoustic methods in diagnosis of selected laryngeal diseases. Journal of Vibroengineering 2015; 17(4): 2089-2098.
- 8. Liaqat A, Ce Z, Mingyi Z. Early diagnosis of Parkinson’s disease from multiple voice recordings by simultaneous sample and feature selection. Expert Systems with Applications 2019; 137: 22-28. https://doi.org/10.1016/j.eswa.2019.06.052.
- 9. Mąka J. The Polish linguistic test review in the assessment of Central Auditory Processing Disorders. Investigationes Linguisticae 2009; 18: 55. https://doi.org/10.14746/il.2009.18.4.
- 10. Reich SG. Does this patient have parkinson disease or essential tremor? Clinics in Geriatric Medicine 2020; 36(1): 25-34. https://doi.org/10.1186/s12881-018-0721-7.
- 11. Ribeiro MT, Singh S, Guestrin C. "Why should trust you?": Explaining the predictions of any classifier. 2016. https://doi.org/10.48550/ARXIV.1602.04938.
- 12. Sakar B, Isenkul M, Sakar CO. Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. Biomedical and Health Informatics, IEEE Journal of 2013; 17: 828-834. https://doi.org/10.1109/JBHI.2013.2245674.
- 13. Schneider S, Baevski A, Collobert R, Auli M. wav2vec: Unsupervised pre-training for speech recognition. arXiv:1904.05862 [cs], September 2019. https://doi.org/10.48550/arXiv.1904.05862.
- 14. Signaevsky M, Marami B, Prastawa M. Antemortem detection of Parkinson’s disease pathology in peripheral biopsies using artificial intelligence. acta neuropathol commun 2022; 10(21). https://doi.org/10.1186/s40478-022-01318-7.
- 15. Sveinbjornsdottir S, Marami B, Prastawa M. The clinical symptoms of Parkinson’s disease. Journal of Neurochemistry 2016; 139(S1): 318-324. https://doi.org/10.1111/jnc.13691. 1.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5c3333a-2cbd-40e2-b9f2-229ba54fb8f0