Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: To analyze the dosimetric and radiobiological differences between dose to water versus dose to medium for patients with carcinoma of the urinary bladder. Materials and Methods: 15 patients with cancer of urinary bladder were selected for the study. VMAT plans were generated for each patient. The dose distributions were calculated in the modes dose to water and to medium with the Monaco treatment planning system. A dosimetric comparative analysis has been made between the two modes of planning in this study. Subsequently, NTCP and TCP were determined for OARs and targets respectively. Results: The mean dose to 2 cc of the rectum, small bowel, left and right femoral heads respectively was higher by 0.8, 1.2, 2.7, and 2.2% for the dose to water calculation. Similarly, the mean dose to D2, D50, and D98 for PTV was higher by 0.4, 0.3, and 0.3% for dose to water calculation. Such small dose differences had little effect on the values of TCP and NTCP. Conclusion: For patients with the urinary bladder there were very small differences between results between calculations carried out in dose to medium and dose to water modes.
Słowa kluczowe
Rocznik
Tom
Strony
19--24
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
autor
- Government Medical College, Kannauj, India
autor
- Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
autor
- Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
autor
- Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
autor
- Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
autor
- Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
autor
- Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
autor
- Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
Bibliografia
- 1. Schoknecht G. Description of radiation fields by separation of primary and scatter radiation. I. The tissue–air ratio in 60Co fields. Strahlentherapie. 1967:132:516-528.
- 2. Batho HF. Lung corrections in Cobalt 60 Beam Therapy. J Can Assoc Radiol. 1964;15:79‐83.
- 3. Oelkfe U, Scholz C. Dose Calculation Algorithms. In: Schlegel W., Bortfeld T., Grosu AL. (eds) New Technologies in Radiation Oncology. Medical Radiology (Radiation Oncology). Springer, Berlin, Heidelberg. 2006. https://doi.org/10.1007/3-540-29999-8_15
- 4. Siebers JV, Keall PJ, Nahum AE, Mohan R. Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations. Phys Med Biol. 2000;45(4):983-95. https://doi.org/10.1088/0031-9155/45/4/313
- 5. Almond PR, Biggs PJ, Coursey BM, et al. AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys. 1999;26(9):1847‐1870. https://doi.org/10.1118/1.598691
- 6. Uzan J, Nahum AE. Radiobiologically guided optimisation of the prescription dose and fractionation scheme in radiotherapy using BioSuite. Br J Radiol. 2012;85(1017):1279‐1286. https://doi.org/10.1259/bjr/20476567
- 7. Lyman JT. Complication probability as assessed from dose-volume histograms. Radiat Res Suppl. 1985;8:S13-S19. https://doi.org/10.2307/3583506
- 8. Gulliford SL, Partridge M, Sydes MR, et al. Parameters for the Lyman Kutcher Burman (LKB) model of Normal Tissue Complication Probability (NTCP) for specific rectal complications observed in clinical practise. Radiother Oncol. 2012;102(3):347‐351. https://doi.org/10.1016/j.radonc.2011.10.022
- 9. Burman C, Kutcher GJ, Emami B, Goiten M. Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys. 1991;21:123-35. https://doi.org/10.1016/0360-3016(91)90172-Z
- 10. Lutkenhaus LJ, Vestergaard A, Bel A, et al. A biological modeling based comparison of two strategies for adaptive radiotherapy of urinary bladder cancer. Acta Oncologica. 2016;55(8):1009-1015. :8, 1009-1015. https://doi.org/10.3109/0284186X.2016.1151548
- 11. Chetty IJ, Curran B, Cygler JEet al. Report of the AAPM Task Group No.105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys. 2007;34:4818-53. https://doi.org/10.1118/1.2795842
- 12. Dogan N, Siebers JV, Keall PJ. Clinical Comparison of Head and Neck and Prostate IMRT Plans Using Absorbed Dose to Medium and Absorbed Dose to Water. Phys Med Biol. 2006;51(19):4967-4980. https://doi.org/10.1088/0031-9155/51/19/015
- 13. Siebers JV, Keall PJ, Nahum AE, Mohan R. Converting Absorbed Dose to Medium to Absorbed Dose to Water for Monte Carlo Based Photon Beam Dose Calculation. Phys Med Biol. 2000;45(4):983-995. https://doi.org/10.1088/0031-9155/45/4/313
- 14. Chen L, Huang B, Huang X, et al. Clinical evaluation for the difference of absorbed doses calculated to medium and calculated to water by Monte Carlo method. Radiat Oncol. 2018;13:137. https://doi.org/10.1186/s13014-018-1081-3
- 15. Gopal SK, Dash PC. Dose-to-medium vs. dose-to-water: Dosimetric evaluation of head and neck VMAT cases using Monaco treatment planning system. Int J Cancer Ther Oncol. 2016;4(4):4416. https://doi.org/10.14319/ijcto.44.16
- 16. Usmani M, Masai N, Oh R, et al. Comparison of Absorbed Dose to Medium and Absorbed Dose to Water for Spine IMRT Plans Using a Commercial Monte Carlo Treatment Planning System. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology. 2014;3(1):60-66. http://dx.doi.org/10.4236/ijmpcero.2014.31010
- 17. Walters BRB, Kramer R, Kawrakow I. Dose to medium versus dose to water as an estimator of dose to sensitive skeletal tissue. Phys Med Biol. 2010;55:4535. https://doi.org/10.1088/0031-9155/55/16/S08
- 18. Fippel M, Nüsslin F. Comments on ‘Converting Absorbed Dose to Medium to Absorbed Dose to Water for Monte Carlo Based Photon Beam Dose Calculations. Phys Med Biol. 2007;45(8):L17-L19. https://doi.org/10.1088/0031-9155/45/8/101
- 19. Ma CM, Mok E, Kapur A, et al. Clinical Implementation of a Monte Carlo Treatment Planning System. Med Phys. 1999;26(10):2133-2143. https://doi.org/10.1118/1.598729
- 20. Keall P. Dm Rather than Dw Should Be Used in Monte Carlo Treatment Planning. Against the Proposition. Med Phys. 2002;29(5):923-924. https://doi.org/10.1118/1.1473137
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5c0a656-bb57-4cbb-a5b5-1fdb6493bd40