PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of reanalysis datasets against radiosonde observation over the Eastern Mediterranean region

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Four meteorological components (geopotential height Z, air temperature T, dew point temperature Td, and relative humidity RH) collected from ERA-5 and ERA-Interim were compared with the observations of nine radiosonde stations with different climatic changes, at different isobaric levels (850, 700, 500, and 200 hPa) during the period 2000-2017, in order to assess the accuracy of the aforementioned reanalysis datasets. The results showed that both reanalysis datasets have a strong correlation with the observed variables, except with dew point temperature and relative humidity in the upper troposphere. The mean values of geopotential height and temperature from both grid dataset are generally consistent with the radiosonde values, whereas considerable bias in the mean Td and RH exists and increases upwards. The study clearly proved that the reanalysis datasets can be used to compensate for the lack of radiosonde observation. Furthermore, air temperature (during 1959-2021) showed an increasing trend from the surface to the lower troposphere, while the temperature decreased in the upper troposphere and lower stratosphere. Finally in this study, the impact of the North Atlantic Oscillation Index (NAOI) on the air temperature was also examined, and a negative relationship was found between NAOI and temperature at the levels: surface, 850, 700, and 500 hPa, while a positive relationship was found, only in winter, at 200 hPa. At the level of 100 hPa, the correlation is positive for both seasons.
Słowa kluczowe
Czasopismo
Rocznik
Strony
2989--3005
Opis fizyczny
Bibliogr. 27 poz., rys., tab
Twórcy
  • Egyptian Meteorological Authority, Cairo, Egypt
autor
  • Egyptian Meteorological Authority, Cairo, Egypt
  • Department of Meteorology and Climatology, Aristotle University of Thessaloniki, Thessaloniki, Greece
  • Faculty of Science Department of Astronomy, Space Science and Meteorology, Cairo University, Giza, Egypt
Bibliografia
  • 1. Al-Hemoud A, Al-Dashti H, Al-Saleh A, Petrov P, Malek M, Elhamoud E, Middleton N (2022) Dust storm ‘hot spots’ and transport pathways affecting the Arabian Peninsula. J Atmos Sol Terr Phys 238:105932
  • 2. Baatz R, Hendricks Franssen HJ, Euskirchen E et al (2021) Reanalysis in earth system science: toward terrestrial ecosystem reanalysis. Rev Geophys 59:3. https://doi.org/10.1029/2020RG000715
  • 3. Bao X, Zhang F (2013) Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. J Clim 26:206–214. https://doi.org/10.1175/JCLI-D-12-00056.1
  • 4. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828
  • 5. Donat MG, Peterson TC, Brunet M et al (2014) Changes in extreme temperature and precipitation in the Arab region: long-term trends and variability related to ENSO and NAO. Int J Climatol 34(3):581–592. https://doi.org/10.1002/joc.3707
  • 6. Dong Y, Li G, Yuan M, Xie X (2017) Evaluation of five grid datasets against radiosonde data over the eastern and downstream regions of the Tibetan plateau in summer. Atmosphere 8:56. https://doi.org/10.3390/atmos8030056
  • 7. Elbessa M, Abdelrahman SM, Tonbol K, Shaltout M (2021) Dynamical downscaling of surface air temperature and wind field variabilities over the southeastern levantine basin, mediterranean sea. Climate 9(10):150. https://doi.org/10.3390/cli9100150
  • 8. Fu G, Charles SP, Timbal B et al (2016) Comparison of NCEP-NCAR and ERA-Interim over Australia. Int J Climatol 36(5):2345–2367. https://doi.org/10.1002/joc.4499
  • 9. Gleixner S, Demissie T, Diro GT (2020) Did ERA5 improve temperature and precipitation reanalysis over East Africa? Atmosphere 11(9):996. https://doi.org/10.3390/atmos11090996
  • 10. Guo Y, Zhang S, Yan J et al (2016) A comparison of atmospheric temperature over China between radiosonde observations and multiple reanalysis datasets. J Meteorol Res 30:242–257. https://doi.org/10.1007/s13351-016-5169-0
  • 11. Hasanean HM (2004) Wintertime surface temperature in Egypt in relation to the associated atmospheric circulation. Int J Climato 24(8):985–999. https://doi.org/10.1002/joc.1043
  • 12. Hersbach H (2016) The ERA5 atmospheric reanalysis. In: Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 12–16 December 2016; Volume 2016, p NG33D–01
  • 13. Hurrell JW, Deser C (2009) North atlantic climate variability: the role of the north Atlantic oscillation. J Mar Syst 79(3–4):231–244. https://doi.org/10.1016/j.jmarsys.2008.11.026
  • 14. IPCC (2013) Summary for policymakers climate change. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press IPCC AR5
  • 15. Johns RH, Doswell CA (1992) Severe local storms forecasting. Wea Forecast 7(4):588–612
  • 16. Marshall GJ (2002) Trends in Antarctic geopotential height and temperature: a comparison between radiosonde and NCEP-NCAR reanalysis data. J Clim 15:659–674. https://doi.org/10.1175/1520-0442(2002)015%3c0659:TIAGHA%3e2.0.CO;2
  • 17. Mooney PA, Mulligan FJ, Fealy R (2011) Comparison of ERA-40, ERA-Interim and NCEP/NCAR reanalysis data with observed surface air temperatures over Ireland. Int J Climatol 31(4):545–557. https://doi.org/10.1002/joc.2098
  • 18. Orlanski I (1975) A Rational subdivision of scales for atmospheric processes. Bull Am Meteorol Soc, 56(5), 527–530. http://www.jstor.org/stable/26216020
  • 19. Philandras CM, Nastos PT, Kapsomenakis IN, Repapis CC (2015) Climatology of upper air temperature in the Eastern Mediterranean region. Atmos Res 152:29–40. https://doi.org/10.1016/j.atmosres.2013.12.002
  • 20. Philandras CM, Kapsomenakis J, Nastos PT, et al (2017) Climatology of upper air temperature over the Mediterranean. Trends and Variability. In Perspectives on Atmospheric Sciences, pp 565–576. Springer, Cham. https://doi.org/10.1007/978-3-319-35095-0_81
  • 21. Shaltout M, El Gindy A, Omstedt A(2013) Recent climate trends and future scenarios in the Egyptian Mediterranean coast based on six global climate models. Geofiz J 30:19–41, UDC 551.581.1, 551.588.7. https://hrcak.srce.hr/105849
  • 22. Stickler A, Storz S, Wartenburger R et al (2015) Upper-Air observations from the German atlantic expedition (1925–27) and comparison with the twentieth century and ERA-20C reanalyses. Meteorol Z 24(5):525–544. https://doi.org/10.1127/metz/2015/0683
  • 23. Tan E (2019) Evaluation of NCEP/NCAR reanalysis Precipitable water data comparing to radiosonde observations for Turkey. Cumhur Sci J 40(2):527–535
  • 24. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106(D7):7183–7192. https://doi.org/10.1029/2000JD900719
  • 25. Tonbol KM, El-Geziry TM, Elbessa M (2018) Evaluation of changes and trends in air temperature within the Southern Levantine basin. Weather 73(2):60–66. https://doi.org/10.1002/wea.3186
  • 26. Türkeş M, Erlat E (2009) Winter mean temperature variability in Turkey associated with the North Atlantic oscillation. Meteorol Atmos Phys 105:211–255. https://doi.org/10.1007/s00703-009-0046-3
  • 27. Woyciechowska J, Bąkowski R (2006) Comparison of values of the chosen meteorological fields measured at the aerological stations and the values taken from NCEP/NCAR Reanalysis. Időjárás 110(2):183–189
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5c08420-f8fb-431c-b286-d856a8317b87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.