PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Applicability of artificial intelligence to reservoir induced earthquakes

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes to use least square support vector machine (LSSVM) and relevance vector machine (RVM) for prediction of the magnitude (M) of induced earthquakes based on reservoir parameters. Comprehensive parameter (E) and maximum reservoir depth (H) are used as input variables of the LSSVM and RVM. The output of the LSSVM and RVM is M. Equations have been presented based on the developed LSSVM and RVM. The developed RVM also gives variance of the predicted M. A comparative study has been carried out between the developed LSSVM, RVM, artificial neural network (ANN), and linear regression models. Finally, the results demonstrate the effectiveness and efficiency of the LSSVM and RVM models.
Czasopismo
Rocznik
Strony
608--619
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
  • Centre for Disaster Mitigation and Management, VIT University, Vellore, India
autor
  • Department of Civil Engineering, Kunsan National University, Kunsan, Jeonbuk, South Korea
Bibliografia
  • Baoqi, C. (1992), Preliminary study on the prediction of reservoir earthquakes. In: P. Knoll (ed.), Induced Seismicity, Balkema, Rotterdam, 213-230.
  • Beacher, G.B. and R.L. Keeney (1982), Statistical examination of reservoir-induced seismicity, Bull. Seismol. Soc. Am. 72, 2, 553-569.
  • Carder, D.S. (1945), Seismic investigations in the Boulder Dam area, 1940-1944, and the influence of reservoir loading on earthquake activity, Bull. Seismol. Soc. Am. 35, 4, 175-192.
  • Deng, S., and T.-H. Yeh (2010), Applying least squares support vector machines to the airframe wing-box structural design cost estimation, Expert Syst. Appl. 37, 12, 8417-8423, DOI: 10.1016/j.eswa.2010.05.038.
  • Erzin, Y., and T. Cetin (2012), The prediction of the critical factor of safety of homogeneous finite slopes using neural networks and multiple regressions, Comp. Geosci. 51, 305-313, DOI: 10.1016/j.cageo.2012.09.003.
  • Feng, D.-Y., J.-P. Gu, M.-Z. Lin, S.-X. Xu, and X.-J. Yu (1984), Assessment of earthquake hazard by simultaneous use of the statistical method and the method offuzzy mathematics, Pure Appl. Geophys. 122, 6, 982-997, DOI: 10.1007/978-3-0348-6245-5_16.
  • Gupta, H.K. (1985), The present status of reservoir induced seismicity investigations with special emphasis on Koyna earthquakes, Tectonophysics 118, 3-4, 257-279, DOI: 10.1016/0040-1951(85)90125-8.
  • Habibagahi, G. (1998), Reservoir induced earthquakes analyzed via radial basis function networks, Soil Dyn. Earthq. Eng. 17, 1, 53-56, DOI: 10.1016/S0267-7261(97)00025-0.
  • Hu, Y., X. Chen, Z. Zhang, W. Ma, Z. Liu, and J. Lei (1986), Induced seismicity at Hunanzhen reservoir, Zhejiang Province, Seismol. Geol. 8, 4, 1-25 (in Chinese).
  • Huang, Z., J. Luo, X. Li, and Y. Zhou (2009), Prediction of effluent parameters of wastewater treatment plant based on improved least square support vector machine with PSO. In: Proc. 1st Int. Conf. on Information Science and Engineering, ICISE, Nanjing, 26-28 Dec. 2009, IEEE Computer Society, Washington, DC, USA, 4058-4061, DOI: 10.1109/ ICISE.2009.846.
  • Kecman, V. (2001), Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models, MIT Press, Massachusetts.
  • Noor, M.M., K. Kadirgama, M.M. Rahman, and M.A. Maleque (2011), Pattern recognition method to predict recycling strategy for electronic equipment, Adv. Mat. Res. 264-265, 949-955, DOI: 10.4028/www.scientific.net/AMR.264-265.949.
  • Pahasa, J., and I. Ngamroo (2011), A heuristic training-based least squares support vector machines for power system stabilization by SMES, Expert Syst. Appl. 38, 11, 13987-13993, DOI: 10.1016/j.eswa.2011.04.206.
  • Park, D., and L.R. Rilett (1999), Forecasting freeway link travel times with a multilayer feed forward neural network, Comput. Aided Civil Infrastruct. Eng. 14, 358-367.
  • Shen, S., and Y. Liu (2008), Efficient multiple faces tracking based on Relevance Vector Machine and Boosting learning, J. Vis. Commun. Image R. 19, 6, 382-391, DOI: 10.1016/j.jvcir.2008.06.005.
  • Simpson, D.W. (1976), Seismicity changes associated with reservoir loading, Eng. Geol. 10, 2-4, 123-150, DOI: 10.1016/0013-7952(76)90016-8.
  • Smola, A.J., and B. Schölkopf (1998), On a kerne-based method for pattern recognition, regression, approximation and operator inversion, Algorithmica 22, 1-2, 211-231, DOI: 10.1007/PL00013831.
  • Suykens, J.A.K., and J. Vandewalle (1999), Least squares support vector machine classifiers, Neural Process. Lett. 9, 3, 293-300, DOI: 10.1023/A:1018628609742.
  • Tao, B., W. Xu, G. Pang, and N. Ma (2008), Prediction of bearing raceways superfinishing based on least squares support vector machines. In: Proc. 4th Int. Conf. on Natural Computation, ICNC’08, Vol. 2, IEEE Computer Society,
  • Washington, DC, USA, 125-129, DOI: 10.1109/ ICNC.2008.413. Tipping, M.E. (2001), Sparse Bayesian learning and the relevance vector machine, J. Mach. Learn. Res. 1, 3, 211-244, DOI: 10.1162/15324430152748236.
  • Vapnik, V.N. (1998), Statistical Learning Theory, Wiley, New York.
  • Wang, L.Y., and W.G. Zhao (2010), Forecasting groundwater level based on Relevance Vector Machine, Adv. Mat. Res. 121-122, 43-47, DOI: 10.4028/www.scientific.net/AMR.121-122.43.
  • Zhang, W., J. Liu, and Y. Niu (2009), Quantitative prediction of MHC-II peptide binding affinity using relevance vector machine, Appl. Intell. 31, 2, 180-187, DOI: 10.1007/s10489-008-0121-3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5bcb700-bd80-441a-9362-f05a1080e3e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.