Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Quantifying the flow resistance in step-pool streams is of importance for studying the restoration of benthic animals and bedload transport. The Darcy–Weisbach friction factor of the total flow resistance is partitioned into components associated with grains, spills, and loose-packed particles. By extending the two-dimensional hydraulic radius, a new proposed rough ness height is applied to evaluate resistance components induced by spills and loose-packed particles. Three morphological patterns induced by different-magnitude foods can be classified to form different flow resistance components, depending on the morphological variation. The three components varying with hydraulic and geometric parameters by considering the closest-1 NSEI and smallest RMSE and MRE have been examined. It is found that the grain resistance factor component, in comparison with other factors, has a slight impact on hydraulic parameters. Hydraulic and geometric parameters have a significant influence on the spill resistance component, accounting for the main proportion of the total resistance. The resistance associated with loose-packed particles correlates with parameters due to the initial random movement of particles and abundant sources.
Wydawca
Czasopismo
Rocznik
Tom
Strony
359--372
Opis fizyczny
Bibliogr. 57 poz.
Twórcy
autor
- State Key Lab of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China
autor
- State Key Lab of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China
autor
- State Key Lab of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China
Bibliografia
- 1. Aberle J, Smart GM (2003) The influence of roughness structure on flow resistance on steep slopes. J Hydraul Res 41(3):259–269
- 2. Abrahams AD, Li G, Atkinson JF (1995) Step-pool streams: adjustment to maximum flow resistance. Water Resour Res 31(10):2593–2602
- 3. Bathurst JC (1978) Flow resistance of large-scale roughness. J Hydraul Div 104(12):1587–1603
- 4. Bathurst JC (1985) Flow resistance estimation in mountain rivers. J Hydraul Eng 1111:625–643
- 5. Beisel JN, Usseglio-Polatera P, Thomas S, Moreteau JC (1998) Stream community structure in relation to spatial variation: the influence of mesohabitat characteristics. Hydrobiologia 389(1–3):73–88
- 6. Billi P, D’Agostino V, Lenzi MA. Marchi L (1998) Bed load, slope and channel processes in a high-altitude alpine torrent. Gravel-Bed Rivers in the Environment, Water Resources Publications, LLC, Highlands Ranch, CO
- 7. Canovaro F, Paris E, Solari L (2007) Effects of macro-scale bed roughness geometry on flow resistance. Water Resour Res 43:W10414
- 8. Chanson H (1994) Hydraulics of skimming flows over stepped channels and spillways. J Hydraul Res 32(3):445–460
- 9. Chartrand SM, Jellinek M, Whiting PJ, Stamm J (2011) Geometric scaling of step-pools in mountain streams: Observations and implications. Geomorphology 129(1–2):141–151
- 10. Cheng NS (2011) Representative roughness height of submerged vegetation. Water Resour Res 47:W08517
- 11. Chin A (2003) The geomorphic significance of step–pools in mountain streams. Geomorphology 55(1–4):125–137
- 12. Chin A, Wohl E (2005) Toward a theory for step pools in stream channels. Prog Phys Geogr 29(3):275–296
- 13. Church M, Zimmermann A (2007) Form and stability of step-pool channels: research progress. Water Resour Res 43:W03415
- 14. Comiti F, Andreoli A, Lenzi MA (2005) Morphological effects of local scouring in step–pool streams. Earth Surf Proc Land 30(12):1567–1581
- 15. Comiti F, Mao L, Wilcox A, Wohl E, Lenzi MA (2007) Field-derived relationships for flow velocity and resistance in high-gradient streams. J Hydrol 340:48–62
- 16. Comiti F, Cadol D, Wohl E (2009) Flow regimes, bed morphology, and flow resistance in self-formed step-pool channels. Water Resour Res 45:W04424
- 17. Death RG, Zimmermann EM (2005) Interaction between disturbance andprimary productivity in determining stream invertebrate diversity. Oikos 111(2):392–402
- 18. Duan XH, Wang ZY, Xu MZ, Zhang K (2009) Effect of streambed sediment on benthic ecology. Int J Sedim Res 24(3):325–338
- 19. Essery ITS, Horner MW (1978). The Hydraulic Design of Stepped Spillways, CIRIA Report No. 33, 3nd edition, Jan., London, UK
- 20. Ferguson R (2007) Flow resistance equation for gravel- and boulder- bed streams. Water Resour Res 43:W05427
- 21. Ferro V, Porto P (2018) Applying hypothesis of self-similarity for flow-resistance law in calabrian gravel-bed rivers. J Hydraul Eng 144(2):04017061
- 22. Graf WH (1984) Flow resistance for steep, mobile channels. Proceedings of Workshop ‘Idraulica del territorio montano’, Bressanone: 341–352
- 23. Hassan MA, Tonina D, Beckie RD, Kinnear M (2014) The effects of discharge and slope on hyporheic flow in step-pool morphologies. Hydrol Process 29(3):419–433
- 24. Hawkins CP, Murphy ML, Anderson N (1982) Effects of canopy, substrate composition, and gradient on the structure of macroinvertebrate communities in cascade range streams of oregon. Ecology 63(6):1840–1856
- 25. Hey RD (1979) Flow resistance in gravel-bed rivers. J Hydraul Div 105(4):365–379
- 26. Katul G, Wiberg P, Albertson J, Hornberger G (2002) A mixing layer theory for flow resistance in shallow streams. Water Resour Res 38(11):1250
- 27. Koloseus HJ, Davidian J (1996) Free-surface instability correlations, and Roughness-concentration effects on flow over hydrodynamically rough surfaces. USGS, Washington. https://doi.org/10.3133/wsp1592CD
- 28. Lee AJ, Ferguson RI (2002) Velocity and flow resistance in step-pool streams. Geomorphology 46(1–2):59–71
- 29. Lenzi MA (2004) Displacement and transport of marked pebbles, cobbles and boulders during floods in a steep mountain stream. Hydrol Process 18(10):1899–1914
- 30. Luo M, Wang X, Yan X, Huang E (2020) Applying the mixing layer analogy for flow resistance evaluation in gravel-bed streams. J Hydrol 589:125119
- 31. Luo M, Ye C, Wang X, Huang E, Yan X (2022) Analytical model of flow velocity in gravel-bed streams under the effect of gravel array with different densities. J Hydrol 608:127581
- 32. MacFarlane WA, Wohl E (2003) Influence of step composition on step geometry and flow resistance in step-pool streams of the Washington Cascades. Water Resour Res 39(2):1037
- 33. Mao L, Lenzi MA (2007) Sediment mobility and bedload transport conditions in an alpine stream. Hydrol Process 21(14):1882–1891
- 34. Marcelo H (2008) Sedimentation engineering, Processes, measurements, modeling, and practice. Virginia, ASCE Press, Reston, pp 21–146
- 35. Matthaei CD, Townsend CR (2000) Long-term effects of local disturbance history on mobile stream invertebrates. Oecologia 125(1):119–126
- 36. Maxwell AR, Papanicolaou AN (2001) Step-pool morphology in high-gradient streams. Int J Sedim Res 16(3):380–390
- 37. McCuen RH, Knight Z, Cutter AG (2006) Evaluation of the Nash-Sutcliffe efficiency index. J Hydrol Eng 11(6):597–602
- 38. Millar RG (1999) Grain and form resistance in gravel-bed rivers resistances. J Hydraul Res 37(3):303–312
- 39. Millar RG, Quick MC (1998) Stable width and depth of gravel-bed rivers with cohesive banks. J Hydr Eng-ASCE 124(10):1005–1013
- 40. Molnar P, Densmore AL, McArdell BW, Turowski JM, Burlando P (2010) Analysis of changes in the step-pool morphology and channel profile of a steep mountain stream following a large flood. Geomorphology 124:85–94
- 41. Palucis MC, Ulizo TP, Fuller B, Lamb MP (2018) Flow resistance, sediment transport, and development in a steep gravel-bedded river flume. Geomorphology 320:111–126
- 42. Powell DM (2014) Flow resistance in gravel-bed rivers: progress in research. Earth Sci Rev 136:301–338
- 43. Recking A, Frey P, Paquier A, Belleudy P, Champagne JY (2008) Feedback between bed load transport and flow resistance in gravel and cobble bed rivers. Water Resour Res 44:W05412
- 44. Rickenmann D, Recking A (2011) Evaluation of flow resistance in gravel-bed rivers through a large field data set. Water Resour Res 47(7):W07538
- 45. Sindelar C, Smart G (2016) Transition flow in step-pool systems: pressure distributions and drag forces. J Hydraul Eng 10:04016035
- 46. Smart GM, Duncan MJ, Walsh JM (2002) Relatively rough flow resistance equations. J Hydraul Eng 128:568–578
- 47. Stefano CD, Palmeri V, Pampalone V, Ferro V (2019) Dissipative analogies of step-pool features: from rills to mountain streams. CATENA 174:235–247
- 48. Strom KB, Papanicolaou AN (2007) ADV measurements around a cluster microform in a shallow mountain stream. J Hydraul Eng 133(12):1379–1389
- 49. Tritico HM, Hotchkiss RH (2005) Unobstructed and obstructed turbulent flow in gravel bed rivers. J Hydraul Eng 131(8):635–645
- 50. Weichert RB, Bezzola GR, Minor H (2008) Bed morphology and generation of step-pool channels. Earth Surf Proc Land 33:1678–1692
- 51. Wilcox AC, Nelson JM, Wohl EE (2006) Flow resistance dynamics in step-pool channels: 2. partitioning between grain, spill, and woody debris resistance. Water Resources Research 42: W05419
- 52. Wohl EE, Thompson DM (2000) Velocity characteristics along a small step–pool channel. Earth Surf Proc Land 25:353–367
- 53. Xu MZ, Wang ZY, Pan BZ, Zhao N (2012) Distribution and species composition of macroinvertebrates in the hypothetic zone of bed sediment. Int J Sedim Res 27(2):129–140
- 54. Zhang C, Xu M, Hassan MA, Chartrand SM, Wang Z (2018) Experimental study on the stability and failure of individual step-pool. Geomorphology 311:51–62
- 55. Zhang C, Xu M, Hassan MA, Chartrand SM, Wang Z, Ma Z (2020) Experiment on morphological and hydraulic adjustments of step-pool unit to flow increase. Earth Surf Proc Land 45:280–294
- 56. Zhao N, Wang ZY, Pan BZ, Xu MZ, Li ZW (2014) Macroinvertebrate assemblages in mountain streams with different streambed stability. River Res Appl 31(7):825–833
- 57. Zimmermann A (2010) Flow resistance in steep streams: an experimental study. Water Resour Res 46:W09536
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5bac4f3-8c73-4424-85b9-90db13c07d41