PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Winter upwelling in the Gulf of Finland, Baltic Sea

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Traditionally, upwelling-related studies in the Baltic Sea have been limited to the period from May to September. Based on wintertime in situ measurements at two nearshore locations in the Gulf of Finland, clear evidence of winter “warm” upwelling events was detected and analysed. The process was very common. At a 10 m deep location, upwelling caused water temperature (T) to switch from 0-1 to 4-5°C and salinity (S) to switch from 4.5 to 6 PSU; at 20 m depth it caused a switch in T between 1 and 2-4°C and in S between 5.5 and 6.8 PSU. Differently from summer upwelling, T and S variations were positively correlated to each other. Salinity variations remained roughly the same throughout the winter, whereas T differences were higher in winter onset, then decreased to ca. 1°C, and increased again after the process reversed to summer-type upwelling in April-May. Based on analysis of SatBaltyk (January to March) sea surface temperature and salinity product imagery, winter upwelling occurrence along the North Estonian coast was 21-28% over 2010-2021, and slightly less along the Finnish coast. Regarding S variations, winter upwelling occurred with roughly similar frequencies and impacts in the northern and southern parts of the gulf. However, the impacts on T and sea ice conditions were highly asymmetrical. Upwelling kept the Estonian coast ice-free longer and water temperatures slightly higher than at the Finnish coast. Winter upwelling as a phenomenon has long been ignored and therefore probably underestimated.
Czasopismo
Rocznik
Strony
356--369
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
  • University of Tartu, Estonian Marine Institute, Tallinn, Estonia
Bibliografia
  • [1] Alenius, P., Myrberg, K., Nekrasov, A., 1998. The physical oceanography of the Gulf of Finland: a review. Boreal Environ. Res. 3 (2), 97-125. http://www.borenv.net/BER/archive/pdfs/ber3/ber3-097-125.pdf.
  • [2] Álvarez, I., deCastro, M., Prego, R., Gómez-Gesteira, M., 2003. Hydrographic characterization of a winter-upwelling event in the Ria of Pontevedra (NW Spain). Estuar. Coast. Shelf Sci. 56 (3-4), 869-876. https://doi.org/10.1016/S0272-7714(02)00309-8.
  • [3] Bychkova, I. A., Viktorov, S. V., 1987. Use of satellite data for identification and classification of upwelling in the Baltic Sea. Oceanology 27 (2), 158-162.
  • [4] Caldwell, D. R., 1978. The maximum density points of pure and saline water. Deep Sea Res 25 (2), 175-181. https://doi.org/10.1016/0146-6291(78)90005-X.
  • [5] CRU, 2021. Climate Research Unit, University of East Anglia. North Atlantic Oscillation (NAO). https://crudata.uea.ac.uk/cru/data/nao/values.htm (accessed 1 April 2021).
  • [6] Dabuleviciene, T., Kozlov, I. E., Vaiciute, D., Dailidiene, I., 2018. Remote Sensing of Coastal Upwelling in the South-Eastern Baltic Sea: Statistical Properties and Implications for the Coastal Environment. Remote Sens 10 (11), 1752. https://doi.org/10.3390/rs10111752.
  • [7] Delpeche-Ellmann, N., Soomere, T., Kudryavtseva, N., 2018. The role of nearshore slope on cross-shore surface transport during a coastal upwelling event in Gulf of Finland, Baltic Sea. Estuar. Coast. Shelf Sci. 209, 123-135. https://doi.org/10.1016/j.ecss.2018.03.018.
  • [8] Ekman, V. W., 1905. On the Influence of the Earth’s Rotation on Ocean-Currents. Ark. Mat. Astr. Fys. 2 (11), 52. http://empslocal.ex.ac.uk/people/staff/gv219/classics.d/Ekman05.pdf (accessed 1 April 2021).
  • [9] EWS, 2021. Estonian Weather Service. http://www.ilmateenistus.ee/kliima/weather-events/?lang=en, (accessed 1 April 2021).
  • [10] Gidhagen, L., 1987. Coastal upwelling in the Baltic Sea — satellite and in situ measurements of sea-surface temperatures indicating coastal upwelling. Estuar. Coast. Shelf Sci. 24 (4), 449-462. https://doi.org/10.1016/0272-7714(87)90127-2.
  • [11] Gill, A. E., Clarke, A. J., 1974. Wind-induced upwelling, coastal currents and sea-level changes. Deep-Sea Res 21, 325-345. https://doi.org/10.1016/0011-7471(74)90038-2.
  • [12] Haapala, J., 1994. Upwelling and its influence on nutrient concentration in the coastal area of the Hanko Peninsula, entrance of the Gulf of Finland. Estuar. Coast. Shelf Sci. 38 (5), 507-521. https://doi.org/10.1006/ecss.1994.1035.
  • [13] Haapala, J., Alenius, P., 1994. Temperature and salinity statistics for the northern Baltic Sea 1961-1990. Finnish Mar. Res. 262, 51-121.
  • [14] Hela, I., 1976. Vertical velocity of the upwelling in the sea. Commentat. Phys.-Math., Soc. Scient. Fennica 46 (1), 9-24.
  • [15] Hjelmefelt, M. R., Brahan Jr., R. R., 1983. Numerical simulation of the airflow over Lake Michigan for a major lake-effect snow event. Mon. Wea. Rev. 111 (1), 205-219. http://doi.org/10.1175/1520-0493(1983)111>0205:NSOTAO<2.0.CO;2.
  • [16] Jaagus, J., Suursaar, Ü., 2013. Long-term storminess and sea level variations on the Estonian coast of the Baltic Sea in relation to large-scale atmospheric circulation. Est. J. Earth Sci. 62 (2), 73-92. https://doi.org/10.3176/earth.2013.07.
  • [17] Jones, P. D., Jónsson, T., Wheeler, D., 1997. Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int. J. Climatol. 17, 1433-1450. https://doi.org/10.1002/(SICI)1097-0088(19971115)17:13>1433::AID-JOC203<3.0.CO;2-P.
  • [18] Keevallik, S., Soomere, T., Pärg, R., Žukova, V., 2007. Outlook for wind measurement at Estonian automatic weather stations. Proc. Estonian Acad. Sci.-Eng. 13 (3), 234-251. https://kirj.ee/public/Engineering/2007/issue_3/eng-2007-3-5.pdf.
  • [19] Kikas, V., Lips, U., 2016. Upwelling characteristics in the Gulf of Finland (Baltic Sea) as revealed by Ferrybox measurements in 2007-2013. Ocean Sci 12, 843-859. https://doi.org/10.5194/os-12-843-2016.
  • [20] Kont, A., Endjärv, E., Jaagus, J., Lode, E., Orviku, K., Ratas, U., Rivis, R., Suursaar, Ü., Tõnisson, H., 2007. Impact of climate change on Estonian coastal and inland wetlands — a summary with new results. Boreal Environ. Res. 12, 653-671. http://www.borenv.net/BER/archive/pdfs/ber12/ber12-653.pdf.
  • [21] Kowalewski, M., Ostrowski, M., 2005. Coastal up- and downwelling in the southern Baltic. Oceanologia 47 (4), 453-475. http://www.iopan.gda.pl/oceanologia/474kowa1.pdf.
  • [22] Kowalewska-Kalkowska, H., Kowalewski, M., 2019. Combining Satellite Imagery and Numerical Modelling to Study the Occurrence of Warm Upwellings in the Southern Baltic Sea in Winter. Remote Sens 11 (24), 2982. https://doi.org/10.3390/rs11242982.
  • [23] Krężel, A., Ostrowski, M., Szymelfenig, M., 2005. Sea surface distribution during upwelling along the Polish coast. Oceanologia 47 (4), 415-432. https://www.iopan.pl/oceanologia/474krez1.pdf.
  • [24] Lass, H.-U., Schmidt, T., Seifert, T., 1994. On the dynamics of upwelling observed at the Darss Sill. In: Proc. 19th Conf. Baltic Oceanogr, Gdańsk, 247-260.
  • [25] Lehmann, A., Myrberg, K., Höflich, K., 2012. A statistical approach to coastal upwelling in the Baltic Sea based on the analysis of satellite data for 1990-2009. Oceanologia 54 (3), 369-393. https://doi.org/10.5697/oc.54-3.369.
  • [26] Lips, U., Laanemets, J., Lips, I., Liblik, T., Suhhova, I., Suursaar, Ü., 2017. Wind-driven residual circulation and related oxygen and nutrient dynamics in the Gulf of Finland (Baltic Sea) in winter. Estuar. Coast. Shelf Sci. 195, 4-15. https://doi.org/10.1016/j.ecss.2016.10.006.
  • [27] Myrberg, K., Andrejev, O., 2003. Main upwelling regions in the Baltic Sea — a statistical analysis based on three-dimensional modelling. Boreal Environ. Res. 8 (2), 97-112. http://www.borenv.net/BER/archive/pdfs/ber8/ber8-097.pdf.
  • [28] Schlitzer, R., 2020. Ocean Data View https://odv.awi.de.
  • [29] Schmelzer, N., Seinä, A., Lundqvist, J.-E., Sztobryn, M., 2008. Ice. In: Feistel, R., Nausch, G., Wasmund, N. (Eds.), State and Evolution of the Baltic Sea, 1952-2005. John Wiley & Sons, 199-240.
  • [30] Sælen, O. H., Aas, E., 2012. Lecture Notes in Physical Oceanography, 108 pp. https://www.uio.no/studier/emner/matnat/geofag/nedlagte-emner/GEO1030/h17/undervisningsmateriale/oseanografi/kompendium-2016-1.pdf (accessed 1 April 2021).
  • [31] SMHI, 2021. Swedish Meteorological and Hydrological Institute. Sea ice. Archived charts and reports available at: http://www.smhi.se/oceanografi/istjanst/havsis_en.php (accessed 1 April 2021).
  • [32] Soomere, T., Myrberg, K., Leppäranta, M., Nekrasov, A., 2008. The progress in knowledge of physical oceanography of the Gulf of Finland: a review for 1997-2007. Oceanologia 50 (3), 287-362. http://www.iopan.gda.pl/oceanologia/503myrbe.pdf.
  • [33] Suursaar, Ü., Aps, R., 2007. Spatio-temporal variations in hydrophysical and -chemical parameters during a major upwelling event off the southern coast of the Gulf of Finland in summer 2006. Oceanologia 49 (2), 209-228. http://www.iopan.gda.pl/oceanologia/492suurs.pdf.
  • [34] Suursaar, Ü., 2009. Interpretation of Doppler effect-based vertical velocity measurements in the coastal waters of Estonia, Baltic Sea: possible influence of upwelling, Langmuir circulation and turbidity. WIT Trans. Built Environ. 105, 193-203. https://doi.org/10.2495/FSI090181.
  • [35] Suursaar, Ü., 2010. Waves, currents and sea level variations along the Letipea — Sillamäe coastal section of the southern Gulf of Finland. Oceanologia 52 (3), 391-416. http://dx.doi.org/10.5697/oc.52-3.391.
  • [36] Suursaar, Ü., 2013. Locally calibrated wave hindcasts in the Estonian coastal sea in 1966-2011. Est. J. Earth Sci. 62 (1), 42-56. http://doi.org/10.3176/earth.2013.05.
  • [37] Suursaar, Ü., 2020. Combined impact of summer heat waves and coastal upwelling in the Baltic Sea. Oceanologia 62 (4), 511-524. https://doi.org/10.1016/j.oceano.2020.08.003.
  • [38] Svansson, A., 1975. Intercation between the coastal zone and the open sea. Finnish Mar. Res./Merentutkimuslait. Julk. 239, 11-28.
  • [39] Uiboupin, R., Laanemets, J., Sipelgas, L., Raag, L., Lips, I., Buhhalko, N., 2012. Monitoring the effect of upwelling on the chlorophyll a distribution in the Gulf of Finland (Baltic Sea) using remote sensing and in situ data. Oceanologia 54, 395-419. https://doi.org/10.5697/oc.54-3.395.
  • [40] Vahtera, E., Laanemets, J., Pavelson, J., Huttunen, M., Kononen, K., 2005. Effect of upwelling on the pelagic environment and bloom-forming cyanobacteria in the western Gulf of Finland, Baltic Sea. J. Marine Syst. 58, 67-82. https://doi.org/10.1016/j.jmarsys.2005.07.001.
  • [41] Walin, G., 1972. Some observations of temperature fluctuations in the coastal region of the Baltic Sea. Tellus 24, 189-198. https://doi.org/10.3402/tellusa.v24i3.10633.
  • [42] Zhurbas, V., Laanemets, J., Vahtera, E., 2008. Modeling of the mesoscale structure of coupled upwelling/downwelling events and the related input of nutrients to the upper mixed layer in the Gulf of Finland, Baltic Sea. J. Geophys. Res. Oceans 113, 1-8. https://doi.org/10.1029/2007JC004280.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5b71b59-149e-4b99-8ef9-148f7fa26190
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.