PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Implementation of a Compact Smart Resistive Sensor Based on a Microcontroller with an Internal ADC

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper a new implementation of a compact smart resistive sensor based on a microcontroller with internal ADCs is proposed and analysed. The solution is based only on a (already existing in the system) microcontroller and a simple sensor interface circuit working as a voltage divider consisting of a reference resistor and a resistive sensor connected in parallel with an interference suppression capacitor. The measurement method is based on stimulation of the sensor interface circuit by a single square voltage pulse and on sampling the resulting voltage on the resistive sensor. The proposed solution is illustrated by a complete application of the compact smart resistive sensor used for temperature measurements, based on an 8-bit ATxmega32A4 microcontroller with a 12-bit ADC and a Pt100 resistive sensor. The results of experimental research confirm that the compact smart resistive sensor has 1°C resolution of temperature measurement for the whole range of changes of measured temperatures.
Rocznik
Strony
225--238
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Smulko, J., Darowicki, K., Wysocki, P. (1998). Digital measurement system for electrochemical noise. Polish Journal of Chemistry, 72(7), 1237−1241.
  • [2] Kotarski, M., Smulko, J. (2009). Noise measurement set-ups for fluctuations-enhanced gas sensing. Metrol. Meas. Syst., 16(3), 457−464.
  • [3] Kuorilehto, M., Kohvakka, M., Suhonen, J., Hamalainen, P., Hannikainen, M., Hamalainen, T.D. (2007). Ultra-low energy wireless sensor networks in practice. John Wiley & Sons, Ltd. Great Britain.
  • [4] Yurish, S.Y. (2010). Universal Interfacing Circuit for Resistive-Bridge Sensors. First International Conference on Sensor Device Technologies and Applications., Venice, Italy, 211−216.
  • [5] Falconi, C., Martinelli, E., Di Natale, C., D’Amico, A., Maloberti, F., Malcovati, P., Baschirotto, A., Stornelli, V., Ferri, G. (2007). Electronic interfaces. Sensors and Actuators B, (121), 295-329.
  • [6] PT100 RTD Evaluation Board User’s Guide. Datasheet for Microchip Technology Inc. 2007. http://ww1.microchip.com/downloads/en/DeviceDoc/51607b.pdf
  • [7] Positive Analog Feedback Compensates PT100 Transducer. Datasheet for Maxim Integrated Products Inc. 2005. http://www.maximintegrated.com/en/app-notes/index.mvp/id/3450
  • [8] AN-1559 Practical RTD Interface Solutions. Datasheet for Texas Instruments. 2013. http://www.ti.com/lit/an/snoa481b/snoa481b.pdf
  • [9] Reverter, F., Jordana, J., Gasulla, M., Pallàs-Areny, R. (2005). Accuracy and resolution of direct resistive sensor-to-microcontroller interfaces. Sensors and Actuators A, (121), 78-87.
  • [10] Bengtsson, L. (2012). Direct analog-to-microcontroller interfacing. Sensors & Actuators A, (179), 105- 113.
  • [11] Reverter, F., Gasulla, M., Pallàs-Areny, R. (2007), Analysis of power-supply interference effects on direct sensor-to-microcontroller interfaces. IEEE Transactions on Instrumentation and Measurement, 1(56), 171−177.
  • [12] Reverter, F. (2012). The Art of Directly Interfacing Sensors to Microcontrollers. Journal of Low Power Electronics and Applications, (2), 265−281.
  • [13] Reverter, F., Casas, Ò. (2009). Interfacing differential resistive sensors to microcontrollers: A direct approach. IEEE Transactions on Instrumentation and Measurement, 10(58), 3405−3410.
  • [14] Sifuentes, E., Casas, O., Reverter, F., Pallàs-Areny, R. (2008). Direct interface circuit to linearise resistive sensor bridges. Sensors and Actuators A, (147), 210-215.
  • [15] Jordana, J., Pallàs-Areny, R. (2006). A simple, efficient interface circuit for piezoresistive pressure sensors. Sensors & Actuators A, (127), 69-73.
  • [16] Kokolanski, Z., Gavrovski, C., Dimcev, V. (2014). Modified single point calibration with improved accuracy in direct sensor-to-microcontroller interface. Measurement, (53), 22-29.
  • [17] Kokolanski, Z., Gavrovski, C., Dimcev, V., Makraduli, M. (2013). Hardware techniques for improving the calibration performance of direct resistive sensor-to-microcontroller interface. Metrol. Meas. Syst., 4(20), 529-542.
  • [18] Czaja, Z. A microcontroller system for measurement of three independent components in impedance sensors using a single square pulse. Sensors & Actuators A, 173, 284−292
  • [19] Czaja, Z. (2009). A method of fault diagnosis of analog parts of electronic embedded systems with tolerances. Measurement, (42), 903−915.
  • [20] Czaja, Z. (2008). Using a square-wave signal for fault diagnosis of analog parts of mixed-signal electronic embedded systems. IEEE Transactions on Instrumentation and Measurement, (57), 1589−1595.
  • [21] Toczek, W., Czaja, Z. (2011). Diagnosis of fully differential circuits based on a fault dictionary implemented in the microcontroller systems. Microelectronics Reliability, 8(51), 1413−1421.
  • [22] International Standard, IEC 60751:2008. (2008). Industrial platinum resistance thermometers and platinum temperature sensors, 2.0 edn. International Electrotechnical Commission. Geneva, Switzerland.
  • [23] 8/16-bit AVR XMEGA A4 Microcontroller. ATxmega128A4, ATxmega64A4, ATxmega32A4, ATxmega16A4. Datasheet for Atmel Corporation. 2013. http://www.atmel.com/Images/Atmel-8069-8-and-16-bit-AVR-AMEGA-A4-Microcontrollers_Datasheet.pdf
  • [24] 8-bit XMEGA A Microcontroller, XMEGA AU MANUAL. Datasheet for Atmel Corporation. 2013. http://www.atmel.com/images/atmel-8331-8-and-16-bit-avr-microcontroller-xmega-au_manual.pdf
  • [25] Watkinson, J. (2001). The art of digital audio. 3rd ed., Elsevier.
  • [26] IRF7105 HEXFET Power MOSFET. Datasheet for International Rectifier. 2003. http://www.irf.com/product-info/datasheets/data/irf7105.pdf
  • [27] FT232BL /BQ USB UART IC Datasheet, Version 2.2. Datasheet for Future Technology Devices International Limited. 2011. http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT232BL_BQ
  • [28] Liu, Z., Banakhr, F., Monte, G., Huang, V. (2015). Using Algorithms on Smart Transducer: An IEEE Standard Perspective. IEEE Sensors Journal, 15(5), 2523−2530.
  • [29] Giorgi, G. (2015). ISO/IEC/IEEE 21451 Compliant Sensor Nodes for Energy-Aware Wireless Sensor Networks. IEEE Sensors Journal, 15(5), 2488−2496.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5b5983b-3305-4374-8384-d577ce03e930
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.