PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Measurements of spectral spatial di stribution of scattering materials for rear projection screens used in virtual reality systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rapid development of computing and visualisation systems has resulted in an unprecedented capability to display, in real time, realistic computer-generated worlds. Advanced techniques, including three-dimensional (3D) projection, supplemented by multi-channel surround sound, create immersive environments whose applications range from entertainment to military to scientific. One of the most advanced virtual reality systems are CAVE-type systems, in which the user is surrounded by projection screens. Knowledge of the screen material scattering properties, which depend on projection geometry and wavelength, is mandatory for proper design of these systems. In this paper this problem is addressed by introducing a scattering distribution function, creating a dedicated measurement setup and investigating the properties of selected materials used for rear projection screens. Based on the obtained results it can be concluded that the choice of the screen material has substantial impact on the performance of the system.
Rocznik
Strony
443--452
Opis fizyczny
Bibliogr. 16 poz., fot., rys., wykr.
Twórcy
  • Department of Metrology and Optoelectronics, Faculty of electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Department of Metrology and Optoelectronics, Faculty of electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Burdea G., Coiffet, P. (2003). Virtual Reality Technology. New York: 2nd Ed., Wiley
  • [2] Cruz-Neira C., Sandin D. J., DeFanti T. A. (1992). The CAVE: A Virtual Reality Theatre, HPCCV Publications, 2, Available online from http://www.evl.uic.edu/pape/CAVE/ [September 99].
  • [3] DeFanti T. A., at al. (March 2011). The future of the CAVE. Central European Journal of Engineering, , 1(1), 16-37.
  • [4] Medina E., Fruland Weghorst R.S. (2008). Virtusphere: Walking in a Human Size VR Hamster Ball. Proc. of the Human factors and Ergonomics Society Annual Meeting. 52(27), 2102-2106.
  • [5] Lebiedź J., Łubinski J., Mazikowski A. (June 2010). Immersive 3D Visualization Laboratory Concept. Proc. of the 2nd International Conference on Information Technology, ICIT 2010. Gdańsk, Poland, 28-30.
  • [6] Fernandes K.J., Raja V., Eyre J. (September 2003). Cybersphere: The Fully Immersive Spherical Projection System. Comm. of the ACM, 46(9), 141-146.
  • [7] Shulgin B.V., Ye J., Raja V.H. (2006). Multiprojector image distortion correction scheme for curved screens on the example of eh Cybersphere. Proc. SPIE: Stereoscopic Displays and Virtual Reality Systems XIII, 6055.
  • [8] Stereoscopic projection. 3D projection Technology. Barco: www.vr.barco.com
  • [9] Jorke H., Fritz M. (2005). Infitec - a new stereoscopic visualization tool by wavelength multiplex imaging. Journal of Three Dimensional Images, 19(3), 50-56.
  • [10] Wyszecki G., Stiles W.S. (1982). Colour Science: Concepts and Methods, Quantitative data and Formulae. Wiley & Sons.
  • [11] Zieliński J., Olifierczuk M. (2010). 3D Display - Technical conditions of implementation and psychophysical image reception. VI Scientific Symposium: Image Processing Techniques TPO’2010. Warsaw, Poland, 365-373.
  • [12] Plexiglas RP. High quality rear projection. Evonik Rohm GmbH: http://corporate.evonik.de
  • [13] Brown A.M., at al. (September 2010). Optical material characterization through BSDF measurement and analysis. Proc. SPIE, Reflection, Scattering and Diffraction from Surfaces II, 7792.
  • [14] Cassarly W.J. (2011). Using the on-axis BSDF at a dielectric surface to model the BSDF at offaxis angles. Proc. SPIE, Illumination Optics II, 8170
  • [15] Spectroradiometer CS-2000/CS-2000A Instruction Manual, Konica Minolta: http://sensing.konicaminolta.us
  • [16] Kwan C., Schmera G., Smulko J. M., Kish L. B., Heszler P., Granqvist C. G. (2008). Advanced agent identification with fluctuation-enhanced sensing. Sensors Journal, IEEE, 8(6), 706-713, DOI: 10.1109/JSEN.2008.923029.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5b3ab70-1d0f-46ee-9adc-c92cf5f3a30e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.