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Abstract The primary purpose of this paper is to analyze the application of a new
integral transform together with a homotopy perturbation method to construct ap-
proximate solutions of the initial-value problem for Korteweg-de Vries and Burgers’
equations. The new integral transform homotopy perturbation method (NIHPTM)
compared to other methods, offers the simple technique to handle such type partial
differential equations. The 5th-order approximation results obtained in illustrative
examples compared with the explicit solutions of the considered problems show the
proposed approach’s efficiency and validity.
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1. Introduction. The non-linear differential equations, namely the
Burgers’ equation and the Korteweg-de Vries (KdV) equation are the ones of
the most important equations in the branch of fluid mechanics. The Burgers’
equation, originally proposed as a simplified model of turbulence occurs in
many problems connected with flows in viscous media as well as in descrip-
tion of groundwater phenomena. The KdV equation arises in modelling such
phenomena as shallow water waves, ion acoustic waves in plasma, long inter-
nal waves in a density-stratified ocean, and acoustic waves on a crystal lattice.
It is a challenging task to solve them through the analytical and numerical
approach.
The Burgers’ equation is defined as (cf.[10])

∂u(x, t)

∂t
+ u(x, t)

∂u(x, t)

∂x
− ∂2u(x, t)

∂x2
= 0, x ∈ R, t ∈ [0,∞). (1)

Eq. (1) admits the exact solution given by [20],

u(x, t) =
1

2
− 1

2
tanh

1

4

(
x− t

2

)
. (2)

The Korteweg-de Vries equation is defined as being [2, 10],

∂u(x, t)

∂t
− 6 u(x, t)

∂u(x, t)

∂x
+

∂3u(x, t)

∂x3
= 0, x ∈ R, t ∈ [0,∞) (3)
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and admits the exact solution given as [20],

u(x, t) = −k2

2
sech2

k

2

(
x− k2t

)
, (4)

which is equivalently written as [20],

u(x, t) = −2k2
ek(x−k2t)(

1 + ek(x−k2t)
)2 . (5)

Several authors reflect various theoretical and computational approaches to
solving Burgers’ equation and the equation of Korteweq-de Vries. For info,
please refer to [1, 2, 9, 10, 11, 15, 18, 20]. The NIHPTM approach[5, 13, 14, 17]
is a combined approach for solving many types of diiferential problems. In
2013 Artion Kashuri and Akli Fundo[7] introduced the proposed methodol-
ogy. Recently, the proposed approach have been successfully employed to
solve engineering and science problems, such as Burgers’ equation resulting
from longitudinal dispersion phenomena[13, 19], discontinued nanotechnology
problem[14], and sixth-order Cahn-Hillard time-fractional equation[12].
In this paper, we have demonstrate the NIHPTM technique for finding an ap-
proximate analytical solution of the equation of Korteweg-de Vries (KdV) and
Burgers’. Finally, with the help of appropriate initial condition of Burgers’
and KdV equation, solution obtained by the NIHPTM approach compared
with the exact and HAM solution as described in [10].

2. Solution using NIHPTM In the present section we first address
the few important principles of the new integral transform and then we apply
the proposed method to the given problem.
A new integral transform is defined over the set of functions

S =

u(t) | |u(t)| ≤ M e

t

k2j , t ∈ [0,∞), M, k1, k2 > 0


where, k1, k2 and M are finite, as following [8, 16]:

K[u(t)] =
1

v

∫ ∞

0
e−

t
v2 u(t)dt = A(v), v ∈ (k1, k2), k1, k2 > 0.

The inverse new integral transform is given by

K−1[A(v)] = u(t) for t ≥ 0 (6)

Definition 2.1 A function f(t) is said to be of exponential order
1

k2
, where

k is a positive real number, if there exist positive constants N and M such
that, |f(t)| ≤ Me

t
k2 , for all t ≥ N .
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Theorem 2.2 If f(t) is piecewise continuous on [0,∞) and of exponential

order
1

k2
then A(v) exists for |v| < k. [7]

The above theorem state the sufficient condition for existance of a new integral
transform.

Theorem 2.3 (Uniqueness Theorem [7]) Suppose f and g are piecewise

continuous on [0,∞) and exponential type
1

k2
and if F (v) and G(v) are a new

integral transforms of f(t) and g(t) respectively then

K[f(t)] = K[g(t)] ⇒ f(t) = g(t)

Theorem 2.4 [8, 16] Let
∂if(x, t)

∂ti
, i = 0, 1, . . . , n be continuous with respect

to t on [0,∞) and of exponential order
1

k2
. Let A(x, v) be a new integral

transform of f(x, t), then

K

[
∂nf(x, t)

∂tn

]
=

A(x, v)

v2n
−

n−1∑
i=0

1

v2(n−i)−1

∂i

∂ti
f(x, 0), for n ≥ 1.

To illustrate the main idea of NIHPTM, we consider:

Du+Ru+Nu = q(x, t), x ∈ R, t ∈ [0,∞) (7)

with initial conditions

u(x, 0) = m(x), ut(x, 0) = g(x), x ∈ R , (8)

where D =
∂2

∂t2
represents second order linear differential operator, R is the

linear differential operator with respect to x, and N represents the general
nonlinear differential operator with respect to variable x. Taking a new inte-
gral transform on Eq. (7), we get

K [Du] +K [Ru] +K [Nu] = K [q(x, t)] . (9)

Using properties of the new integral transform and the given conditions (8)
we get

K [u] = v4K [q(x, t)] + v
[
m(x) + v2g(x)

]
− v4K [Ru+Nu] . (10)

Now, employing the inverse new integral transform on Eq. (10), we get

u(x, t) = H(x, t)−K−1{v4K [Ru+Nu]}, (11)



162 A hybrid solution approach to the Korteweg-de Vries and Burgers’ equations

where H(x, t) represents combined source term and the initial conditions pre-
scribed. According to the homotopy perturbation method [5] we consider the
family of perturbed equations of the form

u(x, t) = H(x, t)− pK−1{v4K [Ru+Nu]}, (12)

where p ∈ [0, 1] represents the imbedding parameter [4, 6]. Now, we employ
the homotopy perturbation method [5] and put

u(x, t) =
∞∑
n=0

pnun(x, t). (13)

Then the nonlinear term can be decomposed as

Nu(x, t) =
∞∑
n=0

pnHn(u0, u1, . . . , un), (14)

where Hn(u0, u1, . . . , un) is the He’s polynomial (see [3, 5]) given by

Hn (u0, u1, · · · , un) =
1

n!

∂n

∂pn

{
N

[ ∞∑
i=0

piui

]}
p=0

, n ≥ 0. (15)

Substituting Eq.(13) and Eq.(14) into Eq. (11), we have

∞∑
n=0

pnun(x, t) =

= H(x, t)−p

{
K−1

[
v4K

[
R

( ∞∑
n=0

pnun(x, t)

)
+

∞∑
n=0

pnHn(u0, u1, . . . , un)

]]}
.

(16)

The following approximations are obtained when comparing the coefficient of
like powers of p.

p0 : u0(x, t) = H(x, t),

p1 : u1(x, t) = −K−1{v4K [Ru0(x, t) +H0(u0)]},
p2 : u2(x, t) = −K−1{v4K [Ru1(x, t) +H1(u0, u1)]},

· · ·

Thus in the series form, we have:

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + · · · (17)

Eq. (17) gives the approximate NIHPTM solution.
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2.1. The Burgers’ Equation We solve Burgers’ equation (1) together

with an initial condition u0 = u(x, 0) =
1

2
− 1

2
tanh

1

4
(x) using NIHPTM as

follows.
We apply new integral transform on Eq. (1), with D[u(x, t)] =

∂

∂t
u(x, t),

R[u(x, t)] =
∂2

∂x2
u(x, t) and N [u(x, t)] = u(x, t)

∂

∂x
u(x, t) and get

K [u] = v

(
1

2
− 1

2
tanh

1

4
(x)

)
+ v2K [uxx − uux] . (18)

Taking inverse transform on Eq. (18), we get

u(x, t) =

(
1

2
− 1

2
tanh

1

4
(x)

)
+K−1

{
v2K [uxx − uux]

}
. (19)

Using homotopy perturbation method to Eq. (19) and proceeding as de-
scribed above we obtain

∞∑
n=0

pnun(x, t) ==

(
1

2
− 1

2
tanh

1

4
(x)

)

+ pK−1

{
v2K

[ ∞∑
n=0

pnunxx(x, t)−
∞∑
n=0

pnHn(u0(x, t), . . . , un(x, t))

]}
, (20)

where

Hn(u0, u1, · · · , un) =
1

n!

∂n

∂pn

[( ∞∑
i=0

piui

)( ∞∑
i=0

pi
∂

∂x
ui

)]
p=0

.

We represent some of the terms of Hn(u0, . . . , un) as follows:

H0(u0(x, t)) = u0(x, t)u0x(x, t),

H1(u0(x, t), u1(x, t)) = u0(x, t)u1x(x, t) + u1(x, t)u0x(x, t),

H2(u0(x, t), u1(x, t), u2(x, t)) = u0(x, t)u2x(x, t) + u1(x, t)u1x(x, t)

+ u2(x, t)u0x(x, t),

H3(u0(x, t), u1(x, t), u2(x, t), u3(x, t)) = u0(x, t)u3x(x, t) + u1(x, t)u2x(x, t)

+u2(x, t)u1x(x, t) + u3(x, t)u0x(x, t),

· · ·

Comparing the coefficient of same power of p in Eq. (20), we get

p0 : u0 = u(x, 0) =
1

2
− 1

2
tanh

1

4
(x)

p1 : u1(x, t) = K−1
{
v2K [u0xx(x, t)−H0(u0(x, t))]

}
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=
1

16
t sech

[x
4

]2
p2 : u2(x, t) = K−1

{
v2K [u1xx(x, t)−H1(u0(x, t), u1(x, t))]

}
=

1

128
t2 sech

[x
4

]2
tanh

[x
4

]
p3 : u3(x, t) = K−1

{
v2K [u2xx(x, t)−H2(u0(x, t), u1(x, t), u2(x, t))]

}
=

1

6144
t3
(
−2 + cosh

[x
2

])
sech

[x
4

]4
· · ·

Figure 1: Comparison between exact solution and approximate solution of
Burgers’ equation (1)

2.2. The Korteweg-de Vries (KdV) equation Applying same pro-
cedure as in Subsection 2.1 to Eq. (3) with initial condition u0 = u(x, 0) =

−2
ex

(1 + ex)2
and with D[u(x, t)] =

∂

∂t
u(x, t), R[u(x, t)] =

∂3

∂x3
u(x, t) and

N [u(x, t)] = 6u(x, t)
∂

∂x
u(x, t), we have

u(x, t) =
1

17280 (1 + ex)11
ex(−34560 (1 + ex)9 − 34560 (−1 + ex) (1 + ex)8 t

− 17280 (1 + ex)7
(
1− 4ex + e2x

)
t2

− 2880 (1 + ex)6
(
−1 + 11ex − 11e2x + e3x

)
t3

− 120 (1 + ex)3
(
1 + 48ex − 681e2x + 1256e3x − 441e4x + 24e5x + e6x

)
t4

−
(
− 1− 1795ex + 44752e2x − 249736e3x + 487318e4x − 444694e5x

+ 202840e6x − 36064e7x + 1603e8x + e9x
)
t5) + · · ·

3. Result and discussion. Approximate solution of the equation of
Burgers’ and the equation of Korteweg-de Vries has been successfully obtained
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Figure 2: Comparison between exact solution and approximate solution of
KdV equation (3)

through a hybrid approach, namely NIHPTM. The comparison between the
method proposed and the method of homotopy analysis with the exact solu-
tion of the equation of Burgers and the equation of KdV has been shown in
Table 1 & 2 as a tabular value. Figs 2.1 & 2.2 shows its graphical relation
with the same solution. From this analysis, we can see that, with the exact
solution, the result observed by the proposed approach is very similar. For
the solution of a strongly non-linear partial differential equation, the proposed
method is straightforward to handle and trustworthy. An essential advantage
of the proposed method over the process of analyzing homotopy is that we
don’t need a convergence control parameter or a suitable convergence area to
match the exact solution of established problems best.

4. Conclusions. In this paper, we successfully employed the NIHPTM
to obtain the approximate solution of the initial-value problem for Burgers’
and Korteweg-de Vries equations. The result obtained through the proposed
process is quite satisfactory and matches the exact solution of the equations
discussed. Thus, this analysis shows how reliable the proposed method is.
The proposed method can be applied in the future in engineering and science
for the largest possible nonlinear problems.
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Hybrydowe podejście do rozwiązania równań
Kortewega-de Vriesa i Burgersa.

Kunjan Shah i Himanshu Patel

Streszczenie Głównym celem tego artykułu jest analiza zastosowania nowej trans-
formacji całkowej i metody homotopijnej perturbacji do konstrukcji przybliżonych
rozwiązań zagadnienia początkowego dla równań Kortewega-de Vriesa i Burgersa.
Nowa metoda homotopijnej perturbacji z transformacją całkową (NIHPTM) w po-
równaniu z innymi metodami oferuje prostą technikę do zastosowania w tego typu
równaniach różniczkowych cząstkowych. Uzyskane aproksymacje piątego rzędu dla
przykładów ilustracyjnych porównane z istniejącymi jawnymi rozwiązaniami rozwa-
żanych zagadnień pokazują skuteczność i trafność proponowanego podejścia.

Klasyfikacja tematyczna AMS (2010): 62J05; 92D20.

Słowa kluczowe: Nowa transformata całkowa, metoda zaburzeń homotopii, równanie
KdV, równanie Burgersa..

A. Numerical comparison of exact and approximate solutions.
The appendix contains a tabular value of the comparison between the method
proposed and the method of homotopy analysis with the exact solution of the
equation of Burgers and the equation of KdV has been shown in Table 1 &
2, respectively.

http://wydawnictwa.ptm.org.pl/index.php/matematyka-stosowana/article/viewArticle/7095
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t x Exact Solution HAM Solution NIHPTM Solution Absolute Error

0

-∞ 1. 1. 1. 0.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

−100 1. 1. 1. 0.
−50 0.99999999998611 0.9999999999 0.999999999986112 0.
−20 0.99995460229829 0.9999546021 0.9999546021312975 0.
0 0.5 0.5 0.5 0
20 0.00004539770170 0.0000453978 0.0000453979 0.
50 0. 0. 0. 0.
100 0. 0. 0. 0.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

∞ 0. 0. 0. 0.

0.25

-∞ 1. 1. 1. 0.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

-100 1. 1. 1. 0.
-50 0.9999999999999 0.99999999998 0.9999999999869532 0.
-20 0.9999573525318144 0.99995735253 0.999957352 0.
0 0.5078118671525 0.51561991572 0.51562245026832 0.00781058
20 0.0000468387124 0.00004832563 0.0000483247 0.
50 0. 0. 0. 0.
100 0. 0. 0. 0.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

∞ 0. 0. 0. 0.

0.5

-∞ 1. 1. 1. 0.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

-100 1. 1. 1. 0.
-50 0.999999999986 0.99999999998 0.99999999999 0.
-20 0.999957352689 0.99995993630 0.999959929333 0.
0 0.515619921465 0.53120937337 0.5312295497 0.0156096
20 0.000048325461 0.00005144221 0.0000514344 0.
50 0. 0. 0. 0.
100 0. 0. 0. 0.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

∞ 0. 0. 0. 0.

0.75

-∞ 1. 1. 1. 0.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

-100 1. 1. 1. 0.
-50 0.999999999987 0.99999999998 0.99999999998848 0.
-20 0.99995866475 0.99996236355 0.99996234068 0.
0 0.523420357539 0.54673815197 0.54680580457 0.0233854
20 0.000049859400 0.00005475976 0.00005473261 0.
50 0. 1.67520 × 10−11 1.67438 × 10−11 1.49104 × 10−12

100 5.551115 × 10−17 3.97766 × 10−23 0. 5.55112 × 10−17

200 0. 7.67192 × 10−45 0. 0.
300 0. 1.47972 × 10−66 0. 0.

1.0

-∞ 1. 1. 1. 0.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

-100 1. 1. 1. 0.
-50 0.999999999987744 0.9999999999 0.999999999989168 1.42397 × 10−12

-20 0.99995993646 0.9999646437 0.99996459107 4.65461 × 10−6

0 0.531209385 0.5621765008 0.5623355677 0.0311262
20 0.0000514420269 0.0000582912 0.0000582250201 6.78299 × 10−6

50 0. 1.7832 × 10−11 1.78122 × 10−11 2.07517 × 10−12

100 0. 5.4781 × 10−23 0. 0.
200 0. 1.0565 × 10−44 0. 0.
300 0. 2.0379 × 10−66 0. 0.

Tablica 1: On comparison of the NIHPTM solution with exact and HAM
solutions of Eq. (1)
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