PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulation and improvement of combustor structure in 3D printed sand recycling system

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a new combustor with an output of 5 t/h is designed based on a computational particle fluid dynamics (CPFD) model. The flow field simulation is combined with the combustion simulation to analyze the internal two-phase flow, temperature field, and combustion products. The combustor structure was optimized. The simulation results show that the recovery efficiency of the waste sand and the energy utilization of the combustor can be improved under the original structure. The sand bed has a significant effect on flow field characteristics. The increase in particle temperature in the combustor increases the efficiency of waste sand recovery by increasing the height of the sand bed by 50 mm. The utilization rate of natural gas is increased and the economic efficiency is improved. The feasibility of the CPFD method can simulate the flow field characteristics inside the combustor very effectively.
Rocznik
Strony
19--27
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wz.
Twórcy
autor
  • College of New Energy, China University of Petroleum (East China) Qingdao, China
autor
  • College of New Energy, China University of Petroleum (East China) Qingdao, China
autor
  • College of New Energy, China University of Petroleum (East China) Qingdao, China
Bibliografia
  • 1. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T. Q. & Hui, D. (2018). Additive manufacturing (3D .printing): A review of materials, methods, applications and challenges. Comp. Part B: Engin., 143, 172–196. DOI: 10.1016/j.compositesb.2018.02.012.
  • 2. Upadhyay, M., Sivarupan, T. & El Mansori, M. (2017) 3D printing for rapid sand casting—A review. J. Manufac. Proc. 29, 211–220. DOI: 10.1016/j.jmapro.2017.07.017.
  • 3. Walker, J., Harris, E., Lynagh, C., Beck, A., Lonardo, R., Vuksanovich, B., Thiel, J., Rogers, K., Conner, B. & MacDonald, E. (2018) 3D Printed Smart Molds for Sand Casting. Internat. J. Metalc., 12(4), 785–796. DOI: 10.1007/s40962-018-0211-x.
  • 4. C. Hull., M. Feygin., Y. Baron., R. Sanders., E. Sachs., A.Lightman. & T. Wohlers. (1995). Rapid prototyping:current technology and. Rapid Prototyp. J., 1, 11–19.
  • 5. Wang, J., Sama, S.R. & Manogharan, G. (2018). Re-Thinking Design Methodology for Castings: 3D Sand-Printing and Topology Optimization. Internat. J. Metalc., 13(1), 2–17. DOI: 10.1007/s40962-018-0229-0.
  • 6. Ying-Min, L., Tian-Shu, W. & Wei-Hua, L. (2018). Research on regeneration methods of animal glue waste sand for foundry. R Soc. Open Sci., 5(5), 172270. DOI: 10.1098/rsos.172270.
  • 7. Andrade, R.M., Cava, S., Silva, S.N., Soledade, L.E.B., Rossi, C.C., Roberto Leite, E., Paskocimas, C.A., Varela, J.A. & Longo, E. (2005). Foundry sand recycling in the troughs of blast furnaces: a technical note. J. Mat. Proces. Technol., 159(1), 125–134. DOI: 10.1016/j.jmatprotec.2003.10.021.
  • 8. Khan, M.M., Singh, M., Mahajani, S.M., Jadhav, G.N. & Mandre, S. (2018). Reclamation of used green sand in small scale foundries. J. Mat. Proces. Technol., 255, 559–569. DOI: 10.1016/j.jmatprotec.2018.01.005.
  • 9. Lucarz, M. (2015). Setting temperature for thermal reclamation of used moulding sands on the basis of thermal analysis. METALURGIJA 54(2), 319–322.
  • 10. Lucarz, M. (2015). Thermal reclamation of the used moulding sands. METALURGIJA 54(1), 109–112.
  • 11. Łucarz, M., Grabowska, B. & Grabowski, G. (2014). Determination of Parameters of the Moulding Sand Reclamation Process, on the Thermal Analysis Bases. Arch. Metal. Mat., 59(3), 1023–1027. DOI: 10.2478/amm-2014-0171.
  • 12. Łucarz, M. (2013). The Influence of The Configuration of Operating Parameters of a Machine for Thermal Reclamation on the Efficiency of Reclamation Process. Arch. Metal. Mater., 58(3), 923–926. DOI: 10.2478/amm-2013-0102.
  • 13. Lanza, A., Islam, M.A. & de Lasa, H. (2016). CPFD modeling and experimental validation of gas–solid flow in a down flow reactor. Comp. & Chem. Engin., 90, 79–93. DOI: 10.1016/j.compchemeng.2016.04.007.
  • 14. Chen, C., Werther, J., Heinrich, S., Qi, H.-Y. & Hartge, E.-U. (2013).CPFD simulation of circulating fluidized bed risers. Powder Technol., 235, 238–247. DOI: 10.1016/j. powtec.2012.10.014.
  • 15. Snider, D.M., O’Rourke, P.J. & Andrews, M.J. Sediment flow in inclined vessels calculated using a multiphase particle-in-cell model for dense particle flows. Internat. J. Multiphase Flow., 24,(8), 1359–1382.
  • 16. Snider, D.M. (2001). An Incompressible Three-Dimensional Multiphase Particle-in-Cell Model for Dense Particle Flows. J. Comput. Physics., 170(2), 523–549. DOI: 10.1006/jcph.2001.6747.
  • 17. Abbasi, A., Ege, P.E. & de Lasa, H.I. (2011). CPFD simulation of a fast fluidized bed steam coal gasifier feeding section. Chem. Engin. J., 174(1), 341–350. DOI: 10.1016/j. cej.2011.07.085.
  • 18. Lan, X., Shi, X., Zhang, Y., Wang, Y., Xu, C. & Gao, J. (2013). Solids Back-mixing Behavior and Effect of the Mesoscale Structure in CFB Risers. Ind. & Engin. Chem. Res., 52(34), 11888–11896. DOI: 10.1021/ie3034448.
  • 19. Snider, D.M. (2007). Three fundamental granular flow experiments and CPFD predictions. Powder Technol., 176(1), 36–46. DOI: 10.1016/j.powtec.2007.01.032.
  • 20. Zhao, P., O’Rourke, P.J. & Snider, D. (2009). Three-dimensional simulation of liquid injection, film formation and transport, in fluidized beds. Particuology 7(5), 337–346. DOI: 10.1016/j.partic.2009.07.002.
  • 21. Snider, D. & Banerjee, S. (2010). Heterogeneous gas chemistry in the CPFD Eulerian–Lagrangian numerical scheme (ozone decomposition). Powder Technol., 199(1), 100–106. DOI: 10.1016/j.powtec.2009.04.023.
  • 22. Karimipour, S. & Pugsley, T. (2012). Application of the particle in cell approach for the simulation of bubbling fluidized beds of Geldart A particles. Powder Technol., 220, 63–69. DOI: 10.1016/j.powtec.2011.09.026.
  • 23. Nakhaei, M., Hessel, C.E., Wu, H., Grévain, D., Zakrzewski, S., Jensen, L.S., Glarborg, P. & Dam-Johansen, K. (2018). Experimental and CPFD study of gas–solid flow in a cold pilot calciner. Powder Technol., 340, 99–115. DOI: 10.1016/j. powtec.2018.09.008.
  • 24. Liu, H., Li, J. & Wang, Q. (2017). Simulation of gas–solid flow characteristics in a circulating fluidized bed based on a computational particle fluid dynamics model. Powder Technol., 321, 132–142. DOI: 10.1016/j.powtec.2017.07.040.
  • 25. Shi, X., Wu, Y., Lan, X., Liu, F. & Gao, J. (2015). Effects of the riser exit geometries on the hydrodynamics and solids back-mixing in CFB risers: 3D simulation using CPFD approach. Powder Technol., 284, 130–142. DOI: 10.1016/j. powtec.2015.06.049.
  • 26. Wang, Q., Niemi, T., Peltola, J., Kallio, S., Yang, H., Lu, J. & Wei, L. (2015). Particle size distribution in CPFD modeling of gas–solid flows in a CFB riser. Particuology 21, 107–117. DOI: 10.1016/j.partic.2014.06.009.
  • 27. Benyahia, S., Syamlal, M. & O’Brien, T.J. (2005). Evaluation of boundary conditions used to model dilute, turbulent gas/solids flows in a pipe. Powder Technol., 156(2-3), 62–72. DOI: 10.1016/j.powtec.2005.04.002.
  • 28. Almuttahar, A. & Taghipour, F. (2008). Computational fluid dynamics of high density circulating fluidized bed riser: Study of modeling parameters. Powder Technol., 185(1), 11–23. DOI: 10.1016/j.powtec.2007.09.010.
  • 29. Li, T., Dietiker, J.F. & Shadle, L. (2014). Comparison of full-loop and riser-only simulations for a pilot-scale circulating fluidized bed riser. Chem. Engin. Sci., 120, 10–21. DOI: 10.1016/j.ces.2014.08.041.
  • 30. Harris, S.E. & Crighton, D.G. (1994). Solitons, solitary waves, and voidage disturbances in gas-fluidized beds J. Fluid Mech., 266, 243–276.
  • 31. Shi, X., Sun, R., Lan, X., Liu, F., Zhang, Y. & Gao, J. (2015). CPFD simulation of solids residence time and back-mixing in CFB risers. Powder Technol., 271, 16–25. DOI: 10.1016/j.powtec.2014.11.011.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5ac6315-a442-4b90-b0e9-4d0ceb3a7f7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.