PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the Nonlinear Distortions of Sound and its Coupling with Other Modes in a Gaseous Plasma with Finite Electric Conductivity in a Magnetic Field

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nonlinear phenomena of the planar and quasi-planar magnetoacoustic waves are considered. We Focus on deriving of equations which govern nonlinear excitation of the non-wave motions by the intense sound in initially static gaseous plasma. The plasma is treated as an ideal gas with finite electrical conductivity permeated by a magnetic field orthogonal to the trajectories of gas particles. This introduces dispersion of a flow. Magnetoacoustic heating and streaming in the field of periodic and aperiodic magnetoacoustic perturbations are discussed, as well as generation of the magnetic perturbations by sound. Two cases, corresponding to magnetosound perturbations of low and high frequencies, are considered in detail.
Twórcy
  • Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Anand R. K., Yadav H. C. (2014), On the structure of MHD shock waves in a viscous non-ideal gas, Theor. Comp. Fluid Dyn., 28, 369–376, doi: 10.1007/s00162-014-0320-y.
  • 2. Anderson N. S. (1953), Longitudinal magneto-hydrodynamic waves, JASA, 23, 3, 529–532, doi: 10.1121/1.1907074.
  • 3. Ballai I. (2006), Nonlinear waves in solar plasmas – a review, Journal of Physics: Conference Series, 44, 20, 20–29, doi: 10.1088/1742-6596/44/1/003.
  • 4. Brodin G., Stenflo L., Shukla P. K. (2006), Nonlinear interactions between kinetic Alfven and ionsound waves, arXiv.physics/0604122v1 [physics.plasm-ph].
  • 5. Fabian A. C., Reynolds C. S., Taylor G. B., Dunn R. J. H. (2005), On viscosity, conduction and sound waves in the intracluster medium, Monthly Notices of the Royal Astronomical Society, 363 3, 891–896, doi: 10.1111/j.1365-2966.2005.09484.x.
  • 6. Geffen N. (1963), Magnetogasdynamic flows with shock waves, Phys. Fluids, 6, 4, 566–571, doi:10.1063/1.1706774.
  • 7. Herlofson N. (1950), Magneto-hydrodynamic waves in a compressible fluid conductor, Nature, 165, 1020–1021, doi: 10.1038/1651020a0.
  • 8. Krishna Prasad S., Banerjee D., Van Doorsselaere T. (2014), Frequency-dependent damping in propagating slow magnetoacoustic waves, Astrophys. Journ., 789, 118, 1–10, doi: 10.1088/0004-637X/789/2/118.
  • 9. Korobeinikov V. P. (1976), Problems in the theory point explosion in gases, American Mathematical Society, Providence.
  • 10. Leble S. (1991), Nonlinear waves in waveguides with stratification, Springer-Verlag, Berlin.
  • 11. Makarov S., Ochmann M. (1996), Nonlinear and thermoviscous phenomena in acoustics I, Acta Acustica united with Acustica, 82, 4, 579–606.
  • 12. Osipov A. I., Uvarov A. V. (1992), Kinetic and gasdynamic processes in nonequilibrium molecular physics, Sov. Phys. Usp., 35, 11, 903–923.
  • 13. Perelomova A. (2006), Development of linear projecting in studies of non-linear flow. Acoustic heating induced by non-periodic sound, Physics Letters A, 357, 42–47, doi: 10.1016/j.physleta.2006.04.014.
  • 14. Perelomova A. (2008), Modelling of acoustic heating induced by different types of sound, Archives of Acoustics 33, 2, 151–160.
  • 15. Perelomova A., Wojda P. (2010), Generation of the vorticity mode by sound in a relaxing Maxwell fluid, Acta Acustica united with Acustica, 96, 5, 807–813.
  • 16. Petviashvili V. I., Pokhotelov O. A. (1992), Solitary waves in plasmas and in the atmosphere, Gordon and Breach, Berlin.
  • 17. Ponomarev E. A. (1961), On the propogation of lowfrequency oscillations along the magnetic field in a viscous compressible plasma, Soviet Astronomy 5, 673–676.
  • 18. Rudenko O. V., Soluyan S. I. (1977), Theoretical foundations of nonlinear acoustics, Plenum, New York.
  • 19. Sagdeev R. Z., Galeev A. A. (1969), Nonlinear plasma theory, Benjamin, New York.
  • 20. Sharma V. D., Singh L. P., Ram R. (1987), The progressive wave approach analyzing the decay of a sawtooth profile in magnetogasdynamics, Phys. Fluds, 30, 5, 1572–1574, doi: 10.1063/1.866222.
  • 21. Shukla P. K., Stenflo L. (1999), [in:] Nonlinear MHD Waves and Turbulence, Lecture Notes in Solar Phys., T. Passot, P.-L. Sulem [Eds.], 1–30, Springer, Berlin.
  • 22. Shyam R., Sharma V. D., Sharma J. (1981), Growth and decay of weak waves in radiative magnetogasdynamics, AIAA Journal, 19, 9, 1246–1248, doi: 10.2514/3.60060.
  • 23. Singh L. P., Singh D. B., Ram S. (2011), Evolution of weak shock waves in perfectly conducting gases, Applied Mathematics, 2, 653–660, doi: 10.4236/am.2011.25086.
  • 24. Singh L. P., Singh R., Ram S. D. (2012), Evolution and decay of acceleration waves in perfectly conducting inviscid radiative magnetogasdynamics, Astrophys. Space Sci., 342, 371–376, doi: 10.1007/s10509-012-1189-0.
  • 25. Truesdell C. (1950), The effect of the compressibility of the Earth on its magnetic field, Phys. Rev., 78, 6, 823–823, doi: 10.1103/PhysRev.78.823.
  • 26. Vincenti W. G., Baldwin Jr B. S. (1962), Effect of thermal radiation on the propagation of plane acoustic waves, J. Fluid Mech., 12, 449–477.
  • 27. Zavershinsky D. I., Molevich N. E. (2014), Alfven wave amplification as a result of nonlinear interaction with a magnetoacoustic wave in an acoustically active conducting medium, Technical Physics Letters, 40, 8, 701–703, doi: 10.1134/S1063785014080288.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5aa17d9-49d6-498e-9fb6-5b746321f9aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.