Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Rising efficiency of wastewater purification systems causes an increase in the amounts of sewage sludge. Its land application is economically attractive because of low cost and high efficiency. Using sewage sludge in agriculture is one of the most preferred ways of its disposal. Only stabilized sludge and containing permissible concentrations of heavy metals can be used for this purpose. The heavy metals introduction into the environment may cause a potential problem for public health, especially when they percolate from soil to plants or groundwater. Therefore, the concentrations of heavy metals in sludge intended for agriculture are regulated. Determination of total content of heavy metals in digested sludge is not sufficient for the evaluation of a potential risk to the environment. The mobility and toxicity of heavy metals depend strongly on their specific chemical forms. The concentrations of particular heavy metal fractions are the most important parameters, which should be examined in order to estimate the influence of sludge on the environment. The aim of an article was to evaluate the influence of anaerobic digestion on the concentration and variability of chemical forms of selected heavy metals (Cr, Cu, Ni, Pb, Zn) in the sewage sludge coming from a municipal wastewater treatment plant in Pulawy (Poland). The content of particular forms of heavy metals in raw and digested sewage sludge was determined by means of the BCR (Community Bureau of Reference) method. The BCR method enables separating four fractions of heavy metals: exchangeable, reducible, oxidizable and residual. The results obtained after analyzing raw sludge showed that the majority of the analyzed heavy metals were predominantly associated with the oxidizable and residual fractions. Only in the case of Zn, the reducible form constituted a greater part. In the case of digested sludge, all studied heavy metals exhibited the most dominant oxidizable and residual fractions; however, the percentages of particular fractions were different than in raw sludge. It was noticed that all heavy metals concentrations were higher in digested sludge in comparison to sludge before anaerobic digestion. The content of heavy metals in the analyzed materials did not exceed the admissible Polish levels for the sludge intended for the agricultural use.
Czasopismo
Rocznik
Tom
Strony
27--35
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Lublin University of Technology, Faculty of Environmental Engineering, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
autor
- Lublin University of Technology, Faculty of Environmental Engineering, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
autor
- Lublin University of Technology, Faculty of Environmental Engineering, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
Bibliografia
- 1. Álvarez E.A., Mochón M.C., Jiménez Sánchez J.C., Ternero Rodrı́guez M. 2002. Heavy metal extractable forms in sludge from wastewater treatment plants. Chemosphere, 47(7), 765–775.
- 2. Aulenta F., Canosa A., Majone M., Panero S., Reale P., Rossetti S. 2008. Trichloroethene dechlorination and H2 evolution are alternative biological pathways of electric charge utilization by a dechlorinating culture in a bioelectrochemical system. Environmental Science & Technology, 42 (16), 6185–6190.
- 3. Braguglia C.M., Gianico A., Mininni G. 2012. ROUTES: innovative solutions for municipal sludge treatment and management. Reviews in Environmental Science and Biotechnology, 11, 11–17.
- 4. Cukjati N., Zupančič G.D., Roš M., Grilc V. 2012. Composting of anaerobic sludge: An economically feasible element of a sustainable sewage sludge management. Journal of Environmental Management, 106, 48–55.
- 5. Dąbrowska L. 2016. Fractionation of heavy metals in bottom sediments and sewage sludges using sequential extraction. Ecological Chemistry and Engineering A., 23(1), 63–75.
- 6. Di Iaconi C., Ramadori R., Lopez A., Passino R. 2005. Hydraulic shear stress calculation in a sequencing batch biofilm reactor with granular biomass. Environmental Science & Technology, 39, 889–894.
- 7. Fuentes A., Lloren M., Saez J., Soler A., Aguilar M.I., Ortuno J.F., Meseguer V.F. 2004. Simple and sequential extractions of heavy metals from different sewage sludge. Chemosphere, 54, 1039–1047.
- 8. García-Delgado M., Rodríguez-Cruz M.S., Lorenzo L.F., Arienzo M., Sánchez-Martín M.J. 2007. Seasonal and time variability of heavy metal content and of its chemical forms in sewage sludges from different wastewater treatment plants. Science of The Total Environment, 382(1), 82–92.
- 9. Gawdzik A., Gawdzik J., Gawdzik B., Gawdzik A. 2015. New indices determining heavy metals migration in a sewage sludge. Ecological Chemistry and Engineering S., 22(4), 637–644.
- 10. Han F.X., Banin A., Kingery W.L., Triplett G.B., Zhou L.X., Zheng S.J. 2003. New approach to studies of heavy metal redistribution in soil. Advances in Environmental Research, 8, 113–120.
- 11. Hanay Ö., Hasar H., Kocer N.N., Aslan S. 2008. Evaluation for agricultural usage with speciation of heavy metals in a municipal sewage sludge. Bulletin of Environmental Contamination and Toxicology, 81, 42–46.
- 12. Heidrich Z., Nieścior A. 1999. Stabilizacja beztlenowa osadów ściekowych. Wodociągi i kanalizacja. Monografie Polskiego Zrzeszenia Inżynierów i Techników Sanitarnych, 4, Warszawa.
- 13. Hernandez A.B., Ferrasse J.H., Chaurand P., Saveyn H., Borschneck D., Roche N. 2011. Mineralogy and leachability of gasified sewage sludge solid residues. Journal of Hazardous Materials, 191(1–3), 219–227.
- 14. Karwowska B., Dąbrowska L. 2017. Bioavailability of heavy metals in the municipal sewage sludge. Ecological Chemistry and Engineering A., 24(1), 75–86.
- 15. Latosińska J., Gawdzik J. 2012. The effect of incineration temperatures on mobility of heavy metals in sewage sludge ash. Environment Protection Engineering, 38(3), 31–44.
- 16. Łukowski A. 2017. Fractionation of selected heavy metals (Zn, Ni, Cu) in municipal sewage sludges from Podlasie Province. Journal of Ecological Engineering, 18(3), 133–139.
- 17. Obarska-Pempkowiak H., Butajło W., Staniszewski A. 2003. Możliwości przyrodniczego wykorzystania osadów ściekowych ze względu na zawartość metali ciężkich. Inżynieria i Ochrona Środowiska, 2(7), 179–184.
- 18. Scancar J., Milacic R., Strazar M., Burica O. 2000. Total metal concentrations and partitioning of Cd, Cr, Cu, Fe, Ni and Zn in sewage sludge. Science of The Total Environment, 250(1–3), 9–19.
- 19. Stephenson T., Judd S., Jefferson B., Brindle K. 2000. Membrane bioreactors for wastewater treatment. IWA Publishing, London.
- 20. Szumska M., Gworek B. 2009. Metody oznaczania frakcji metali ciężkich w osadach ściekowych. Ochrona Środowiska i Zasobów Naturalnych, 41, 42–63.
- 21. Teh C.Y., Budiman P.M., Shak K.P.Y., Wu T.Y. 2016. Recent advancement of coagulation-flocculation and its application in wastewater treatment. Industrial&Engineering Chemistry Research, 55(16), 4363–4389.
- 22. Tytła M. 2019. Assessment of heavy metal pollution and potential ecological risk in sewage sludge from municipal wastewater treatment plant located in the most industrialized region in Poland – case study. International Journal of Environmental Research and Public Health, 16(13), 2430.
- 23. Tytła M., Widziewicz K., Zielewicz E. 2016. Heavy metals and its chemical speciation in sewage sludge at different stages of processing. Environmental Technology, 37(7), 899–908.
- 24. Ure A.M., Quevauviller P., Mantau H., Griepink B. 1993. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commision of the European Communities. International Journal of Environmental Analytical Chemistry, 51, 135–151.
- 25. Wang C., Li C.X., Ma H.T., Qian J., Zhai J.B. 2006. Distribution of extractable fractions of heavy metals in sludge during the wastewater treatment process. Journal of Hazardous Materials, 137, 1277–1283.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5a9f47b-f301-44d2-90ed-cf38ca63dad8