Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Evaluating soil strength by geophysical methods using P-waves was undertaken in this study to assess the effects of changed binder ratios on stabilization and compression characteristics. The materials included dredged sediments collected in the seabed of Timrå region, north Sweden. The Portland cement (Basement CEM II/A-V, SS EN 197-1) and ground granulated blast furnace slag (GGBFS) were used as stabilizers. The experiments were performed on behalf of the Svenska Cellulosa Aktiebolaget (SCA) Biorefinery Östrand AB pulp mill. Quantity of binder included 150, 120 and 100 kg. The properties of soil were evaluated after 28, 42, 43, 70, 71 and 85 days of curing using applied geophysical methods of measuring the travel time of primary wave propagation. The P-waves were determined to evaluate the strength of stabilized soils. The results demonstrated variation of P-waves velocity depending on stabilizing agent and curing time in various ratios: Low water/High binder (LW/HB), High water/Low binder (HW/LB) and percentage of agents (CEM II/A-V/GGBFS) as 30%/70%, 50%/50% and 70%/30%. The compression characteristics of soils were assessed using uniaxial compressive strength (UCS). The P-wave velocities were higher for samples stabilized with LW/HB compared to those with HW/LB. The primary wave propagation increased over curing time for all stabilized mixes along with the increased UCS, which proves a tight correlation with the increased strength of soil solidified by the agents. Increased water ratio gives a lower strength by maintained amount of binder and vice versa.
Rocznik
Tom
Strony
art. no. e141593
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
autor
- Swedish Transport Administration, Gibraltargatan 7, Malmö, Sweden
- Lund University, Division of Building Materials, Box 118, SE- 221-00, Lund, Sweden
autor
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles (Brussels Faculty of Engineering), Laboratory of Image Synthesis and Analysis (LISA). Campus de Solbosch - CP 165/57, Avenue Franklin D. Roosevelt 50, B-1050 Brussels, Belgium
Bibliografia
- [1] L. Czarnecki and D. Van Gemert, “Innovation in construction materials engineering versus sustainable development,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 6, pp. 765–771, 2017, doi: 10.1515/bpasts-2017-0083.
- [2] P. Lindh, “Optimizing binder blends for shallow stabilisation of fine-grained soils,” Proc. Inst. Civ. Eng.: Ground Improv., vol. 5, pp. 23–34, 2001, doi: 10.1680/grim.2001.5.1.23.
- [3] Y. Xizhong, L. Shudong, and C. Wei, “Silt subgrade modification and stabilization with ground granulated blast furnace slag and carbide lime in areas with a recurring high groundwater,” in 2010 Int. Conf. on Mechanic Automation and Control Eng., 2010, pp. 2063–2067, doi: 10.1109/MACE.2010.5536286.
- [4] P. Lindh and M.G. Winter, “Sample preparation effects on the compaction properties of Swedish fine-grained tills,” Q. J. Eng. Geol. Hydrogeol., vol. 36, pp. 321–330, 2003, doi: 10.1144/1470-9236/03-018.
- [5] V. Lemenkov and P. Lemenkova, “Measuring Equivalent Cohesion Ceq of the Frozen Soils by Compression Strength Using Kriolab Equipment,” Civ. Environ. Eng. Rep., vol. 31, pp. 63–84, 2021, doi: 10.2478/ceer-2021-0020.
- [6] O. Uyanık, “Estimation of the porosity of clay soils using seismic P- and S-wave velocities,” J. Appl. Geophy., vol. 170, p. 103832, 2019, doi: 10.1016/j.jappgeo.2019.103832.
- [7] N.C. Consoli, E.J.B. Marin, R.A.Q. Samaniego, K.S. Heineck, and A.D.R. Johann, “Use of sustainable binders in soil stabilization,” J. Mater. Civ. Eng., vol. 31, no. 2, p. 06018023, 2019, doi: 10.1061/(ASCE)MT.1943-5533.0002571.
- [8] V. Lemenkov and P. Lemenkova, “Testing Deformation and Compressive Strength of the Frozen Fine-Grained Soils With Changed Porosity and Density,” J. Appl. Eng. Sci., vol. 11, pp. 113–120, 2021, doi: 10.2478/jaes-2021-0015.
- [9] S.A. Bernal, J.L. Provis, V. Rose, and R. Mejía de Gutierrez, “Evolution of binder structure in sodium silicate-activated slag-metakaolin blends,” Cem. Concr. Compos., vol. 33, no. 1, pp. 46–54, 2011, doi: 10.1016/j.cemconcomp.2010.09.004.
- [10] E.U. Eyo, S. Ng’ambi, and S.J. Abbey, Inclusion of RoadCem Additive in Cementitious Materials for Soil Stabilization. Intl. Found. Congr. Equipment Expo | Dallas, Texas, 2021, pp. 166–176, doi: 10.1061/9780784483411.016.
- [11] C.G. da Rocha, E.J.B. Marin, R.A.Q. Samaniego, and N.C. Consoli, “Decision-making model for soil stabilization: Minimizing cost and environmental impacts,” J. Mater. Civ. Eng., vol. 33, no. 2, p. 06020024, 2021, doi: 10.1061/(ASCE)MT.1943-5533.0003551.
- [12] T.W. Emery, R.J. Stevens, J. Roy, E. Flores, and W.S. Guthrie, “Soil-Water Characteristic Curves for Clayey Soil Treated with Cement or Lime,” in 2020 Intermountain Eng., Techn. and Comp. (IETC), 2020, pp. 1–5, doi: 10.1109/IETC47856.2020.9249212.
- [13] S. Horpibulsuk, R. Rachan, A. Chinkulkijniwat, Y. Raksachon, and A. Suddeepong, “Analysis of strength development in cement-stabilized silty clay from microstructural considerations,” Constr. Build. Mater., vol. 24, no. 10, pp. 2011–2021, 2010, doi: 10.1016/j.conbuildmat.2010.03.011.
- [14] P. Lindh and P. Lemenkova, “Evaluation of Different Binder Combinations of Cement, Slag and CKD for S/S Treatment of TBT Contaminated Sediments,” Acta Mech. Autom., vol. 15, pp. 236–248, 2021, doi: 10.2478/ama-2021-0030.
- [15] P. Lindh and P. Lemenkova, “Resonant Frequency Ultrasonic P-Waves for Evaluating Uniaxial Compressive Strength of the Stabilized Slag–Cement Sediments,” Nordic Concrete Research, vol. 65, pp. 39–62, 2021, doi: 10.2478/ncr-2021-0012.
- [16] A. Mahmood, R. Hassan, and A. Fouad, “Effect of Lime, Cement, and Lime-Cement Stabilisation on Low to Medium Plasticity Clayey Soil,” in IEEE Asia-Pacific Conf. Comp. Sci. & Data Eng. (CSDE), 2019, pp. 1–7, doi: 10.1109/CSDE48274.2019.9162384.
- [17] Z. Su, J. Liu, Y. Jin, C. Hou, and Y. Nie, “Cement/Activated-Carbon Solidification/Stabilization Treatment of Phenol-Containing Soil,” in 3rd Int. Conf. on Bioinformatics and Biomedical Eng., 2009, pp. 1–4, doi: 10.1109/ICBBE.2009.5162482.
- [18] K. Diamantis, E. Gartzos, and G. Migiros, “Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from Central Greece: Test results and empirical relations,” Eng. Geol., vol. 108, no. 3, pp. 199–207, 2009, doi: 10.1016/j.enggeo.2009.07.002.
- [19] L. Brunarski and M. Dohojda, “An approach to in-situ compressive strength of concrete,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 64, no. 4, pp. 687–695, 2016, doi: 10.1515/bpasts-2016-0078.
- [20] L. Czarnecki and D. Van Gemert, “Civil Engineering – Ongoing Technical Research. Part I,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 64, no. 4, pp. 661–663, 2016, doi: 10.1515/bpasts-2016-0075.
- [21] H. Källén, A. Heyden, K. Åström, and P. Lindh, “Measuring and evaluating bitumen coverage of stones using two different digital image analysis methods,” Measurement, vol. 84, pp. 56–67, 2016, doi: 10.1016/j.measurement.2016.02.007.
- [22] D. Fratta, K.A. Alshibli, W.M. Tanner, and L. Roussel, “Combined TDR and P-Wave Velocity Measurements for the Determination of In Situ Soil Density—Experimental Study,” Geotech. Test. J., vol. 28, pp. 553–563, 2005, doi: 10.1520/GTJ12293.
- [23] M. Zhao, Y. Huang, P. Wang, Y. Cao, and X. Du, “An analytical solution for the dynamic response of an end-bearing pile subjected to vertical P-waves considering water-pile-soil interactions,” Soil Dyn. Earthq. Eng., vol. 153, p. 107126, 2022, doi: 10.1016/j.soildyn.2021.107126.
- [24] N. Zhang, X. Liu, and H. Lan, “Characterizing saturation state of loess using P-wave velocity,” Eng. Geol., vol. 290, p. 106207, 2021, doi: 10.1016/j.enggeo.2021.106207.
- [25] X. Gu, K. Zuo, A. Tessari, and G. Gao, “Effect of saturation on the characteristics of P-wave and S-wave propagation in nearly saturated soils using bender elements,” Soil Dyn. Earthq. Eng., vol. 145, p. 106742, 2021, doi: 10.1016/j.soildyn.2021.106742.
- [26] X.Wei, H. Liu, H. Choo, and T. Ku, “Correlating failure strength with wave velocities for cemented sands from the particle-level analysis,” Soil Dyn. Earthq. Eng., vol. 152, p. 107062, 2022, doi: 10.1016/j.soildyn.2021.107062.
- [27] M.N. Hussien and M. Karray, “Shear wave velocity as a geotechnical parameter: an overview,” Can. Geotech. J., vol. 53, no. 2, pp. 252–272, 2016, doi: 10.1139/cgj-2014-0524.
- [28] E.C. Leong, J. Cahyadi, and H. Rahardjo, “Measuring shear and compression wave velocities of soil using bender–extender elements,” Can. Geotech. J., vol. 46, no. 7, pp. 792–812, 2009, doi: 10.1139/T09-026.
- [29] A.M.A. El Sayed and N.A. El Sayed, “Thermal conductivity calculation from p-wave velocity and porosity assessment for sandstone reservoir rocks,” Geothermics, vol. 82, pp. 91–96, 2019, doi: 10.1016/j.geothermics.2019.06.001.
- [30] Y.-M. Shi, F.-C. Yao, H.-S. Sun, and L. Qi, “Density inversion and porosity estimation using seismic data,” Chin. J. Geophys., vol. 53, no. 1, pp. 144–153, 2010, doi: 10.1002/cjg2.1481.
- [31] S. Foti and R. Lancellotta, “Soil porosity from seismic velocities,” Géotechnique, vol. 54, pp. 551–554, 2004, doi: 10.1680/geot.2004.54.8.551.
- [32] A. Cheshomi and A. Khalili, “Comparison between pressuremeter modulus (EPMT) and shear wave velocity (Vs) in silty clay soil,” J. Appl. Geophy., vol. 192, p. 104399, 2021, doi: 10.1016/j.jappgeo.2021.104399.
- [33] J. Wu, Y. Min, B. Li, and X. Zheng, “Stiffness and strength development of the soft clay stabilized by the one-part geopolymer under one-dimensional compressive loading,” Soils Found., vol. 61, no. 4, pp. 974–988, 2021, doi: 10.1016/j.sandf.2021.06.001.
- [34] X. Liu, H. Qin, and H. Lan, “On the relationship between soil strength and wave velocities of sandy loess subjected to freezethaw cycling,” Soil Dyn. Earthq. Eng., vol. 136, p. 106216, 2020, doi: 10.1016/j.soildyn.2020.106216.
- [35] T. Gečys, G. Šaučiuvėnas, L. Ustinovichius, C. Miedzialowski, and P. Sulik, “Surface based cohesive behavior implementation for the strength analysis of glued-in threaded rods in glulam,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 5, pp. 1149–1157, 2020, doi: 10.24425/bpasts.2020.134665.
- [36] A. Grabiec, D. Zawal, J. Starzyk, and D. Krupa-Palacz, “Selected properties of concrete with recycled aggregate subjected to biodeposition,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 6, pp. 1171–1179, 2019, doi: 10.24425/bpasts.2019.130892.
- [37] P. Manikandan, A. Elayaperumal, and R. Franklin Issac, “Influence of mechanical alloying process on structural, mechanical and tribological behaviours of cnt reinforced aluminium composites – a statistical analysis,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 2, p. e136745, 2021, doi: 10.24425/bpasts.2021.136745.
- [38] P. Lindh, “Provning stabiliserad jord med geofysiska metoder. Sveriges Bygg och Utvecklingsfond (SBUF) 13324,” Swedish Construction and Development Fund (SBUF), 2018, sBUF Report 13324 (in Swedish).
- [39] N. Ryden, U. Ekdahl, and P. Lindh, “Quality control of cement stabilised soil using non-destructive seismic tests,” The German Society for Non-Destructive Testing, Stuttgart, Berlin, Germany, Tech. Rep., 2006, dGZfp – Proc. BB102-CD. Lecture 34, Advanced Testing of Fresh Cementitious Materials.
- [40] H. Åhnberg and M. Holmén, “Assessment of stabilised soil strength with geophysical methods,” Ground Improv., vol. 164, no. 3, pp. 109–116, 2011, doi: 10.1680/grim.2011.164.3.109.
- [41] R.D. Verástegui-Flores, G. Di Emidio, A. Bezuijen, J. Vanwalleghem, and M. Kersemans, “Evaluation of the free–free resonant frequency method to determine stiffness moduli of cementtreated soil,” Soils Found., vol. 55, no. 5, pp. 943–950, 2015, doi: 10.1016/j.sandf.2015.09.001.
- [42] I. Yuksel, “12 - blast-furnace slag,” in Waste and Supplementary Cementitious Materials in Concrete, ser. Woodhead Publishing Series in Civil and Structural Engineering, R. Siddique and P. Cachim, Eds. Woodhead Publishing, 2018, pp. 361–415, doi: 10.1016/B978-0-08-102156-9.00012-2.
- [43] D.L. Wang, M.L. Chen, and D.D.C. Tsang, “Chapter 5 – green remediation by using low-carbon cement-based stabilization/solidification approaches,” in Sust. Remed. Contam Soil & Groundwater, D. Hou, Ed. Butterworth-Heinemann, 2020, pp. 93–118, doi: 10.1016/B978-0-12-817982-6.00005-7.
- [44] Swedish Institute for Standards, “Earthworks – Part 4: Soil treatment with lime and/or hydraulic binders,” 2018. [Online]. Available: https://sis.se/en/produkter/civil-engineering/earthworksexcavations-foundation-construction-underground-works/ss-en-16907- 42018/
- [45] PCB Piezotronics Group Inc., “Model 352B10. Miniature, lightweight (0.7 gm), ceramic shear ICP® accel., 10 mV/g, 2 to Installation and Operating Manual.” 11 2013, Product Manual. [Online]. Available: https://www.pcb.com/contentstore/docs/pcb_corporate/vibration/products/manuals/352b10.pdf
- [46] PCB Piezotronics Group Inc., “Model: 352B10 | Accelerometer, ICP,” 2011. [Online]. Available: https://www.pcb.com/products?m=352B10
- [47] PCB Piezotronics Group Inc., “Test & Measurement Sensors & Instrumentation. Acceleration & Vibration, Acoustics, Pressure, Force, Load, Strain, Shock, & Torque,” 3425 Walden Av., Depew, NY 14043, 2011, iSO 17892-7:2017. [Online]. Available: https://www.pcb.com/contentstore/mktgcontent/linkeddocuments/pcb/testandmeasurementcatalog.pdf
- [48] Swedish Institute for Standards, “Standard Guide for Using the Seismic Refraction Method for Subsurface Investigation,” 2018, aSTM D5777-18. [Online]. Available: https://www.sis.se/en/produkter/external-categories/construction-astmvol-04/soil-and-rock-i-d420–d5876-astm-vol-0408/astmd5777-18/
- [49] Swedish Institute for Standards, “Standard Test Methods for Downhole Seismic Testing. ASTM standard D7400/D7400M-19,” 2019, sTD-80010978. [Online]. Available: https://www.sis.se/en/produkter/external-categories/construction-astm-vol-04/soil-and-rock-ii-d5877--latest-astm-vol-0409/astm-d7400d7400m-19/
- [50] Swedish Institute for Standards, “Geotechnical investigation and testing – Laboratory testing of soil – Part 7: Unconfined compression test (ISO 17892-7:2017),” 2017. [Online]. Available: https://www.sis.se/en/produkter/environment-healthprotection-safety/soil-quality-pedology/physical-properties-ofsoils/ss-en-iso-17892-72018/
- [51] Swedish Institute for Standards, “Geotechnical tests – Shear strength – Direct simple shear test, CU- and CD-tests – Cohesive soil,” 1991. [Online]. Available: https://www.sis.se/en/ produkter/civil- engineering/ earthworks- excavations- foundationconstruction-underground- works/ss27127/
- [52] A.M. Grabiec, J. Starzyk, K. Stefaniak, J. Wierzbicki, and D. Zawal, “On possibility of improvement of compacted silty soils using biodeposition method,” Constr. Build. Mater., vol. 138, pp. 134–140, 2017, doi: 10.1016/j.conbuildmat.2017.01.071.
- [53] V. Lemenkov and P. Lemenkova, “Using TeX Markup Language for 3D and 2D Geological Plotting,” Found. Comput. Decis. Sci., vol. 46, pp. 43–69, 2021, doi: 10.2478/fcds-2021-0004.
- [54] R. Bahar, M. Benazzoug, and S. Kenai, “Performance of compacted cement-stabilised soil,” Cem. Concr. Compos., vol. 26, no. 7, pp. 811–820, 2004, doi: 10.1016/j.cemconcomp.2004.01.003.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5a8ef79-bdb3-4066-ace2-d65597c25bca