Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A novel asymmetric scheme for double image encryption, compression and watermarking based on QR decomposition in the Fresnel domain has been presented. The QR decomposition provides a permutation matrix as a ciphertext, and the product of orthogonal and triangular matrix as a key. The ciphertext obtained through this process is a sparse matrix that is compressed by the CSR method to give compressed encrypted data, which when combined with a host image, gives a watermarked image. Thus, a cryptosystem that involves compression and watermarking is proposed. The proposed scheme is validated for grayscale images. To check the efficacy of the proposed scheme, histograms, statistical parameters, and key sensitivity are analyzed. The scheme is also tested against various attacks. Numerical simulations are performed to validate the security of the scheme.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
283--295
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- Department of Applied Sciences, The NorthCap University, Gurugram, India, 122017
autor
- Department of Computer Science Engineering, The NorthCap University, Gurugram, India, 122017
autor
- Department of Mathematics, Central University of Haryana, Mahendergarh, India, 123031
autor
- Department of Mathematics, SoET, Central University of Haryana, Mahendergarh, India, 123031
autor
- Department of Applied Sciences, The NorthCap University, Gurugram, India, 122017
Bibliografia
- [1] REFREGIER P., JAVIDI B., Optical image encryption based on input plane and Fourier plane random encoding, Optics Letters 20(7), 1995, pp. 767–769, DOI: 10.1364/OL.20.000767.
- [2] CHEN W., CHEN X., Optical color image encryption based on an asymmetric cryptosystem in the Fresnel domain, Optics Communications 284(16–17), 2011, pp. 3913–3917, DOI: 10.1016/j.optcom.2011.04.005.
- [3] JOSHI M., SHAKHER C., SINGH K., Image encryption and decryption using fractional Fourier transform and radial Hilbert transform, Optics and Lasers in Engineering 46(7), 2008, pp. 522–526, DOI: 10.1016/j.optlaseng.2008.03.001.
- [4] UNNIKRISHNAN G., JOSEPH J., SINGH K., Optical encryption by double-random phase encoding in the fractional Fourier domain, Optics Letters 25(12), 2000, pp. 887–889, DOI: 10.1364/OL.25.000887.
- [5] HENNELLY B., SHERIDAN J.T., Optical image encryption by random shifting in fractional Fourier domains, Optics Letters 28(4), 2003, pp. 269–271, DOI: 10.1364/OL.28.000269.
- [6] LIU Z., CHEN H., LIU T., LI P., XU L., DAI J., LIU S., Image encryption by using gyrator transform and Arnold transform, Journal of Electronic Imaging 20(1), 2011, article 013020, DOI: 10.1117/1.3557790.
- [7] ZHOU N., WANG Y., GONG L., Novel optical image encryption scheme based on fractional Mellin transform, Optics Communications 284(13), 2011, pp. 3234–3242, DOI: 10.1016/j.optcom.2011.02.065.
- [8] CHEN L., ZHAO D., Optical image encryption with Hartley transforms, Optics Letters 31(23), 2006, pp. 3438–3440, DOI: 10.1364/OL.31.003438.
- [9] SINGH P., YADAV A.K., SINGH K., SAINI I., Optical image encryption in the fractional Hartley domain, using Arnold transform and singular value decomposition, AIP Conference Proceedings 1802, 2017, article 020017, DOI: 10.1063/1.4973267.
- [10] MEHRA I., NISHCHAL N.K., Image fusion using wavelet transform and its application to asymmetric cryptosystem and hiding, Optics Express 22(5), 2014, pp. 5474–5482, DOI: 10.1364/OE.22.005474.
- [11] ABUTURAB M.R., Group multiple-image encoding and watermarking using coupled logistic maps and gyrator wavelet transform, Journal of the Optical Society of America A 32(10), 2015, pp. 1811–1820, DOI: 10.1364/JOSAA.32.001811.
- [12] QIN W., PENG X., Asymmetric cryptosystem based on phase-truncated Fourier transforms, Optics Letters 35(2), 2010, pp. 118–120, DOI: 10.1364/OL.35.000118.
- [13] KUMAR R., QUAN C., Asymmetric multi-user optical cryptosystem based on polar decomposition and Shearlet transform, Optics Communications 120, 2019, pp. 118–126, DOI: 10.1016/j.optlaseng.2019.03.024.
- [14] CHEN J., ZHU Z., LIU Z., FU C., ZHANG L., YU H., A novel double-image encryption scheme based on cross-image pixel scrambling in gyrator domains, Optics Express 22(6), 2014, pp. 7349–7361, DOI: 10.1364/OE.22.007349.
- [15] KUMAR R., SHERIDAN J.T., BHADURI B., Nonlinear double image encryption using 2D non-separable linear canonical transform and phase retrieval algorithm, Optics & Laser Technology 107, 2018, pp. 353–360, DOI: 10.1016/j.optlastec.2018.06.014.
- [16] LI H., WANG Y., Double-image encryption based on discrete fractional random transform and chaotic maps, Optics and Lasers in Engineering 49(7), 2011, pp. 753–757, DOI: 10.1016/j.optlaseng.2011.03.017.
- [17] LIU Z., GONG M., DOU Y., LIU F., LIN S., ASHFAQ AHMAD M., DAI J., LIU S., Double image encryption by using Arnold transform and discrete fractional angular transform, Optics and Lasers in Engineering 50(2), 2012, pp. 248–255, DOI: 10.1016/j.optlaseng.2011.08.006.
- [18] LIU Z., GUO Q., XU L., ASHFAQ AHMAD M., LIU S., Double image encryption by using iterative random binary encoding in gyrator domains, Optics Express 18(11), 2010, pp. 12033–12043, DOI: 10.1364/OE.18.012033.
- [19] SINGH H., Hybrid structured phase mask in frequency plane for optical double image encryption in gyrator transform domain, Journal of Modern Optics 65(18), 2018, pp. 2065–2078, DOI: 10.1080/09500340.2018.1496286.
- [20] SUI L., LU H., WANG Z., SUN Q., Double-image encryption using discrete fractional random transform and logistic maps, Optics and Lasers in Engineering 56, 2014, pp. 1–12, DOI: 10.1016/j.optlaseng.2013.12.001.
- [21] TAO R., XIN Y., WANG Y., Double image encryption based on random phase encoding in the fractional Fourier domain, Optics Express 15(24), 2007, pp. 16067–16079, DOI: 10.1364/OE.15.016067.
- [22] CARNICER A., MONTES-USATEGUI M., ARCOS S., JUVELLS I., Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys, Optics Letters 30(13), 2005, pp. 1644–1646, DOI: 10.1364/OL.30.001644.
- [23] SINGH P., KUMAR R., YADAV A.K., SINGH K., Security analysis and modified attack algorithms for a nonlinear optical cryptosystem based on DRPE, Optics and Lasers in Engineering 139, 2021, article 106509, DOI: 10.1016/j.optlaseng.2020.106501.
- [24] JIAO S., LI G., ZHOU C., ZOU W., LI X., Special ciphertext-only attack to double random phase encryption by plaintext shifting with speckle correlation, Journal of the Optical Society of America A 35(1), 2018, pp. A1–A6, DOI: 10.1364/JOSAA.35.0000A1.
- [25] PENG X., ZHANG P., WEI H., YU B., Known-plaintext attack on optical encryption based on double random phase keys, Optics Letters 31(8), 2006, pp. 1044–1046, DOI: 10.1364/OL.31.001044.
- [26] WANG X., ZHAO D., A special attack on the asymmetric cryptosystem based on phase-truncated Fourier transforms, Optics Communications 285(6), 2012, pp. 1078–1081, DOI: 10.1016/j.optcom.2011.12.017.
- [27] KUMARI E., MUKHERJEE S., SINGH P., KUMAR R., Asymmetric color image encryption and compression based on discrete cosine transform in Fresnel domain, Results in Optics 1, 2020, article 100005, DOI: 10.1016/j.rio.2020.100005.
- [28] YANG Y.-G., GUAN B.-W., LI J., LI D., ZHOU Y.-H., SHI W.-M., Image compression-encryption scheme based on fractional order hyper-chaotic systems combined with 2D compressed sensing and DNA encoding, Optics & Laser Technology 119, 2019, article 105661, DOI: 10.1016/j.optlastec.2019.105661.
- [29] GONG L., DENG C., PAN S., ZHOU N., Image compression-encryption algorithms by combining hyper-chaotic system with discrete fractional random transform, Optics & Laser Technology 103, 2018, pp. 48–58, DOI: 10.1016/j.optlastec.2018.01.007.
- [30] GONG L., QIU K., DENG C., ZHOU N., An image compression and encryption algorithm based on chaotic system and compressive sensing, Optics & Laser Technology 115, 2019, pp. 257–267, DOI: 10.1016/j.optlastec.2019.01.039.
- [31] BOUKARAM W.H., TURKIYYAH G., LTAIEF H., KEYES D.E., Batched QR and SVD algorithms on GPUs with applications in hierarchical matrix compression, Parallel Computing 74, 2018, pp. 19–33, DOI: 10.1016/j.parco.2017.09.001.
- [32] SU Q., NIU Y., WANG G., JIA S., YUE J., Color image blind watermarking scheme based on QR decomposition, Signal Processing 94, 2014, pp. 219–235, DOI: 10.1016/j.sigpro.2013.06.025.
- [33] BULUC A., FINEMAN J.T., FRIGO M., GILBERT J.R., LEISERSON C.E., Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks, SPAA, 2009, pp. 233–244, DOI: 10.1145/1583991.1584053.
- [34] XU Q., SUN K., CAO C., ZHU C., A fast image encryption algorithm based on compressive sensing and hyperchaotic map, Optics and Lasers in Engineering 121, 2019, pp. 203–214, DOI: 10.1016/j.optlaseng.2019.04.011.
- [35] ZHOU K., FAN J., FAN H., LI M., Secure image encryption scheme using double random-phase encoding and compressed sensing, Optics & Laser Technology 121, 2020, article 105769, DOI: 10.1016/j.optlastec.2019.105769.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5a816fd-3d28-4d2f-9c35-90fe4de0320e