PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite element analysis of stresses generated in cortical bone during implantation of a novel Limb Prosthesis Osseointegrated Fixation System

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was a biomechanical evaluation of the stresses generated in bone during implantation of the implant designed for direct skeletal attachment of limb prosthesis and a typical interference-fit implant of the reference. Using the finite element method implantation processes of both implants were modelled. The influence of two factors on stresses generated in bone was analysed: first – the radial interference between the implant and reamed marrow cavity (0.05 mm up to 0.25 mm) and second – the three types of implant's surfaces: polished, beaded and flaked. Obtained results show that in the case of the smallest value of radial interference (0.05 mm), stresses generated in cortical bone are more appropriate for the reference implant than for the designed one. With the increase of both analysed factors generated stresses are in favour of the designed implant especially in longitudinal direction for both, implant-adjacent and deep cortical tissue (even 18 times lower) alike. Stresses patterns also present that stresses values are lower in overall volume of analysed bone's part, during implantation of the designed implant. Presented characteristics and patterns confirm that the implantation method of presented implant is safer than a method for typical interference-fit implants for direct skeletal attachment of limb prosthesis.
Twórcy
autor
  • Bialystok University of Technology, 45A, Wiejska Street, 15-351 Bialystok, Poland
Bibliografia
  • [1] Abd Razak NA, Abu Osman NA, Ali S, Gholizadeh H, Wan Abas WAB. Comparison study of the prosthetics interface pressure profile of air splint socket and ICRC polypropylene socket for upper limb prosthetics. Biocybern Biomed Eng 2015;35(2):100–5. http://dx.doi.org/10.1016/j.bbe.2014.08.003.
  • [2] Ansys Inc. Ansys Mechanical APDL Element Reference, Release 15.0; 2013.
  • [3] Ashman RB, Cowin SC, Van Buskirk WC, Rice JC. A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomech 1984;17(5):349–61. http://dx.doi.org/10.1016/0021-9290(84)90029-0.
  • [4] Berahmani S, Janssen D, van Kessel S, Wolfson D, de Waal Malefijt M, Buma P, et al. An experimental study to investigate biomechanical aspects of the initial stability of press-fit implants. J Mech Behav Biomed Mater 2015;42:177–85. http://dx.doi.org/10.1016/j.jmbbm.2014.11.014.
  • [5] Bishop NE, Höhn JC, Rothstock S, Damm NB, Morlock MM. The influence of bone damage on press-fit mechanics. J Biomech 2014;47(6):1472–8.
  • [6] Bobyn JD, Pilliar RM, Cameron HU, Weatherly GC. The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin Orthop Relat Res 1980;(150):263–70.
  • [7] Brånemark R, Berlin O, Hagberg K, Bergh P, Gunterberg B, Rydevik B. A novel osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: a prospective study of 51 patients. Bone Jt J 2014;96-B(1). http://dx.doi.org/10.1302/0301-620X.96B1.31905.
  • [8] Carter DR, Caler WE, Spengler DM, Frankel VH. Fatigue behavior of adult cortical bone: the influence of mean strain and strain range. Acta Orthop Scand 1981;52(October (5)):481–90.
  • [9] Collins D, Karmarkar A, Relich R, Pasquina P, Cooper R. Review of research on prosthetic devices for lower extremity. Crit Rev Biomed Eng 2006;34(5):379–439.
  • [10] Dabiri Y, Najarian S, Eslami MR, Zahedi S, Moser D. A powered prosthetic knee joint inspired from muscoskeletal system. Biocybern Biomed Eng 2013;33(2):118–24. http://dx.doi.org/10.1016/j.bbe.2013.03.004.
  • [11] Damm NB, Morlock MM, Bishop NE. Friction coefficient and effective interference at the implant-bone interface. J Biomech 2015;48(12):3517–21.
  • [12] Nebergall A, Bragdon C, Antonellis A, Kärrholm J, Brånemark R, Malchau H. Stable fixation of an osseointegated implant system for above-the-knee amputees: titel RSA and radiographic evaluation of migration and bone remodeling in 55 cases. Acta Orthop 2012;83(2). http://dx.doi.org/10.3109/17453674.2012.678799.
  • [13] Patent application: Two-element implant for direct skeletal attachment of limb prosthesis. Application number: P.416266.
  • [14] Pitkin M. Design features of implants for direct skeletal attachment of limb prostheses. J Biomed Mater Res A 2013;101(11):3339–48.
  • [15] Prochor P, Piszczatowski S, Sajewicz E. Biomechanical evaluation of a novel Limb Prosthesis Osseointegrated Fixation System designed to combine the advantages of interference-fit and threaded solutions. Acta Bioeng Biomech 2016. http://dx.doi.org/10.5277/ABB-00642-2016-02.
  • [16] Tillander J, Hagberg K, Hagberg L, Brånemark R. Osseointegrated titanium implants for limb prosthesis attachments – infectious complications. Clin Orthop Relat Res 2010;468(10). http://dx.doi.org/10.1007/s11999-010-1370-0.
  • [17] Tomaszewski PK, van Diest M, Bulstra SK, Verdonschot N, Verkerke GJ. Numerical analysis of an osseointegrated prosthesis fixation with reduced bone failure risk and periprosthetic bone loss. J Biomech 2012;45(11):1875–80. http://dx.doi.org/10.1016/j.jbiomech.2012.05.032.
  • [18] Tomaszewski PK, Verdonschot N, Bulstra SK, Rietman JS, Verkerke GJ. Simulated bone remodeling around two types of osseointegrated implants for direct fixation of upper-leg prostheses. J Mech Behav Biomed Mater 2012;15:167–75. http://dx.doi.org/10.1016/j.jmbbm.2012.06.015.
  • [19] Tomaszewski PK, Verdonschot N, Bulstra SK, Verkerke GJ. A comparative finite-element analysis of bone failure and load transfer of osseointegrated prostheses fixations. Ann Biomed Eng 2010;38(7):2418–27. http://dx.doi.org/10.1007/s10439-010-9966-9.
  • [20] Weinans H, Huiskes R, Grootenboer HJ. Quantitative analysis of bone reactions to relative motions at implant-bone interfaces. J Biomech 1993;26(11):1271–81.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5a6c3de-4670-457a-825c-ce628e36369f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.