PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of recycling blast furnace dust by magnetization roasting with straw charcoal as reductant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Blast furnace dust generated in the iron-making process not only contains a large amount of iron but also the widely used non-ferrous metal zinc, which is classified as hazardous waste. In this study, the process of recycling blast furnace dust by magnetization roasting with straw charcoal as the reductant is proposed, and the mechanism of magnetization roasting was explored through thermodynamic analysis, X-ray diffraction analysis, and thermogravimetric analysis. The results for the thermodynamic analysis showed that the reduction of blast furnace dust by the straw charcoal was feasible theoretically. The increase in the roasting temperature not only promoted the reduction of hematite (Fe2O3) but also reduced zinc ferrite (ZnFe2O4) to Fe3O4 and ZnO. The results showed that almost all Fe2O3 and ZnFe2O4 in the blast furnace dust were reduced to Fe3O4 and ZnO under the conditions of straw charcoal amount of 6%, the roasting temperature of 750℃, and the roasting time of 60 min. Then, the iron concentrate with the iron recovery of 85.61% and an iron grade of 63.50% was obtained by the magnetic separation. Meanwhile, the grade of zinc in the iron concentrate was 0.19%. Finally, the flowsheet of simultaneously recovering iron and zinc from the blast furnace dust was put forward, which could realize that 85.61% of iron was recovered and 92.57% of zinc was extracted into the solution.
Rocznik
Strony
art. no. 149265
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Twórcy
autor
  • Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing 100083, China
  • Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
  • University of Chinese Academy of Sciences, Beijing 100049, China
autor
  • Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing 100083, China
autor
  • Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
  • University of Chinese Academy of Sciences, Beijing 100049, China
autor
  • Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing 100083, China
Bibliografia
  • ASADI ZEYDABADI, B., MOWLA, D., SHARIAT, M.H., FATHI KALAJAHI, J., 1997. Zinc recovery from blast furnace flue dust. Hydrometallurgy. 47(1), 113-125.
  • CHUN, T.J., ZHU, D.Q., 2015. New Process of Pellets-Metallized Sintering Process (PMSP) to Treat Zinc-Bearing Dust from Iron and Steel Company. Metall Mater Trans B. 46(1), 1-4.
  • DAS, B., PRAKASH, S., REDDY, P.S.R., MISRA, V.N., 2007. An overview of utilization of slag and sludge from steel industries. Resour Conserv Recy. 50(1), 40-57.
  • GUO, X.S., LI, Z.Y., HAN, J.C., YANG, D., SUN, T.C., 2021. Study of Straw Charcoal as Reductant in Co-reduction Roasting of Laterite Ore and Red Mud to Prepare Powdered Ferronickel. Mining Metall Explor. 38(5), 2217-2228.
  • HAJINAJAF, N., MEHRABADI, A., TAVAKOLI, O., 2021. Practical strategies to improve harvestable biomass energy yield in microalgal culture: A review. Biomass Bioenerg. 145, 105941.
  • HALLI, P., HAMUYUNI, J., REVITZER, H., LUNDSTRÖM, M., 2017. Selection of leaching media for metal dissolution from electric arc furnace dust. J Clean Prod. 164, 265-276.
  • HU, T., LV, X.W., BAI, C.G., 2016. Enhanced Reduction of Coal-Containing Titanomagnetite Concentrates Briquette with Multiple Layers in Rotary Hearth Furnace. Steel Res Int. 87(4), 494-500.
  • HU, W.T., WANG, H.J., LIU, X.W., SUN, C.Y., 2014. Effect of nonmetallic additives on iron grain grindability. Int J Miner Process. 130, 108-113.
  • HU, W.T., LIU, X.W., WANG, H.J., DAI, X.J., PAN, D.L., LI, J., SUN, C.Y., XIA, H.W., WANG, B., 2017. Improvement of Sodium Leaching Ratio of Ferric Bauxite Sinter after Direct Reduction. Minerals-Basel. 7(1).
  • HU, W.T., XIA, H.W., PAN, D.L., WEI, X.L., LI, J., DAI, X.J., YANG, F., LU, X., WANG, H.J., 2018. Difference of zinc volatility in diverse carrier minerals: The critical limit of blast furnace dust recycle. Miner Eng. 116, 24-31.
  • KANABKAEW, T., NGUYEN, T.K.O., 2011. Development of Spatial and Temporal Emission Inventory for Crop Residue Field Burning. Environ Model Assess. 16(5), 453-464.
  • LANZERSTORFER, C., BAMBERGER-STRASSMAYR, B., PILZ, K., 2015. Recycling of Blast Furnace Dust in the Iron Ore Sintering Process: Investigation of Coke Breeze Substitution and the Influence on Off-gas Emissions. ISIJ Int. 55(4), 758-764.
  • LANZERSTORFER, C., 2017. Characterization of dust from blast furnace cast house de-dusting. Environ Technol. 38(19), 2440-2446.
  • LECLERC, N., MEUX, E., LECUIRE, J.M., 2002. Hydrometallurgical recovery of zinc and lead from electric arc furnace dust using mononitrilotriacetate anion and hexahydrated ferric chloride. J Hazard Mater. 91(1), 257-270.
  • LI, Y.C., LIU, H., PENG, B., MIN, X.B., HU, M., PENG, N., YUANG, Y.Z., LEI, J., 2015. Study on separating of zinc and iron from zinc leaching residues by roasting with ammonium sulphate. Hydrometallurgy. 158, 42-48.
  • LIN, X., PENG, Z., YAN, J., LI, Z., HWANG, J.Y., ZHANG, Y., LI, G., JIANG, T., 2017. Pyrometallurgical recycling of electric arc furnace dust. J Clean Prod. 149, 1079-1100.
  • LIU, C., SUN, Y., LI, N., ZHANG, B., LIU, J., 2019. Improved energy utilization efficiency via adding solar radiant heating mode for traditional bioreactor to dispose straw: Experimental and numerical evaluation. Waste Manage. 89, 303-312.
  • LUO, X., WANG, C., SHI, X., LI, X., WEI, C., LI, M., DENG, Z., 2022. Selective separation of zinc and iron/carbon from blast furnace dust via a hydrometallurgical cooperative leaching method. Waste Manage. 139, 116-123.
  • MAKKONEN, H.T., HEINO, J., LAITILA, L., HILTUNEN, A., PÖYLIÖ, E., HÄRKKI, J., 2002. Optimisation of steel plant recycling in Finland: dusts, scales and sludge. Resour Conserv Recy. 35(1), 77-84.
  • MANSFELDT, T., DOHRMANN, R., 2004. Chemical and mineralogical characterization of blast-furnace sludge from an abandoned landfill. Environ Sci Technol. 38(22), 5977-5984.
  • NAYAK, N.P., 2022. Characterization of blast furnace flue dust- an assessment for its utilization. Mater Today. 50, 2078-2083.
  • SEGLAH, P.A., WANG, Y., WANG, H., BI, Y., ZHOU, K., WANG, Y., WANG, H., FENG, X., 2020. Crop straw utilization and field burning in Northern region of Ghana. J Clean Prod. 261, 121191.
  • SHEN, L., QIAO, Y., GUO, Y., TAN, J., 2010. Preparation of nanometer-sized black iron oxide pigment by recycling of blast furnace flue dust. J Hazard Mater. 177(1), 495-500.
  • STEER, J.M., GRIFFITHS, A.J., 2013. Investigation of carboxylic acids and non-aqueous solvents for the selective leaching of zinc from blast furnace dust slurry. Hydrometallurgy 140, 34-41.
  • WU, S.L., CHANG, F., ZHANG, J.L., LU, H., 2017. Kinetics and Reduction Behavior of Self-reducing Briquettes Containing Blast Furnace Dust, 8th International Symposium on High-Temperature Metallurgical Processing. San Diego, CA, pp. 591-601.
  • WU, Y.L., JIANG, Z.Y., ZHANG, X.X., XUE, Q.G., MIAO, Z., ZHOU, Z., SHEN, Y.S., 2018. Process optimization of metallurgical dust recycling by direct reduction in rotary hearth furnace. Powder Technol. 326, 101-113.
  • XU, J., WANG, N., CHEN, M., ZHOU, Z., YU, H., 2020. Comparative investigation on the reduction behavior of blast furnace dust particles during in-flight process in hydrogen-rich and carbon monoxide atmospheres. Powder Technol. 366, 709-721.
  • YANG, X., CHU, M., SHEN, F., ZHANG, Z., 2009. Mechanism of zinc damaging to blast furnace tuyere refractory. Acta Metall Sin-Engl. 22(6), 454-460.
  • YE, L., PENG, Z., YE, Q., WANG, L., AUGUSTINE, R., PEREZ, M., LIU, Y., LIU, M., TANG, H., RAO, M., LI, G., JIANG, T., 2021. Toward environmentally friendly direct reduced iron production: A novel route of comprehensive utilization of blast furnace dust and electric arc furnace dust. Waste Manage. 135, 389-396.
  • ZHANG, D., ZHANG, X., YANG, T., RAO, S., HU, W., LIU, W., CHEN, L., 2017. Selective leaching of zinc from blast furnace dust with mono-ligand and mixed-ligand complex leaching systems. Hydrometallurgy 169, 219-228.
  • ZHANG, D., LING, H., YANG, T., LIU, W., CHEN, L., 2019. Selective leaching of zinc from electric arc furnace dust by a hydrothermal reduction method in a sodium hydroxide system. J Clean Prod. 224, 536-544.
  • ZHONG, R., YI, L., HUANG, Z., SHEN, X., JIANG, T., 2018. Sticking mechanism of low grade iron ore-coal composite in rotary kiln reduction. Powder Technol. 339, 625-632.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5a2d995-cdd2-4b3f-9d57-510a7e4e1b51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.