PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selection of the best route for column configuration in an existing copper circuit

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study was aimed to utilize column flotation to obtain much cleaner concentrate in the Cu circuit. However, the numbers of equipment and the proper streams for column application should be the key for successful operation. Therefore, the effects of some operational parameters such as wash water rate, airflow rate and froth height were investigated on the streams of namely Cu first cleaner concentrate, Cu rougher concentrate and Cu third cleaner concentrate in terms of mineral recoveries and selectivity. Distribution of wash water rate to products was also determined by a tracer test method. Optimum operating conditions and accordingly performance of the column were determined by simulation studies. According to the results, the suitable streams for industrial scale flotation column are advised as the rougher concentrate and/or first cleaner concentrate. With series installation of columns, it is possible to obtain two different concentrates which include 22% Cu, 4% Zn and 17% Cu, 8% Zn without any decrease in overall recovery of plant.
Rocznik
Strony
552--564
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Department of Mining Engineering, Hacettepe University, Beytepe, Ankara, Turkey
autor
  • First Quantum Minerals Ltd., Republic of Panama
Bibliografia
  • ALTUN, O., 2011. Application of column flotation in copper circuit in Cayeli Bakir Isletmeleri, MSc Thesis, 127.
  • BREITENBACH, K.A., 1982. Chemical tracer retention in porous media. MSc thesis, 57.
  • CIENSKI, T., COFFIN, V.L., 1981. Column flotation operation at Mines Gaspê molybdenum circuit. Proc. 13th Annual Meeting of the Canadian Mineral Processors, January, 240-262.
  • COFFIN, V.L., MISZCZAK, J., 1982. Column flotation at Mines Gaspê. Proc. 14th Int. Mineral Processing Congress, Toronto, Canada, 4-21.
  • DEY, S., PANI, S., SINGH, R., PAUL, G. M., 2015. Response of process parameters for processing of iron ore slime using column flotation. Int. J. Miner. Process., 140, 58-65.
  • DIONNE, C.H., 1989. Mechanisms Involved in Solids Recovery to Bitumen Froths. B.A.Sc. Thesis, Dept. of Geological Engineering, University of Toronto, Toronto Canada.
  • FINCH, J.A., DOBBY, G.S., 1990. Column Flotation, Pergamon Press, 180.
  • GOODALL, C.M., O’CONNOR, C.T., 1991. Residence time distribution studies in a flotation column. Int. J. Miner. Process., 31, 1-2, 97-113.
  • GÜLSOY, Ö.Y., ERSAYIN, S. 1998. Improving the reproducibility of semi-batch flotation tests. Trans. IMM, Sec. C, Vol 107, C81.
  • GROPPO, J.G., PAREKH, B.K., 1990. Continuous pilot-scale testing of column flotation for recovery of fine coal. Minerals Engineering, 42, 10, 1189-1192.
  • HARBORT, G., CLARKE, D., 2017. Fluctuations in the popularity and usage of flotation columns – An overview. Miner. Engineering, 100, 17-30.
  • MASSINAEI, M., KOLAHDOOZAN, M., NOAPARAST, M., OLIAZADEH, M., YIANATOS, J., SHAMSADINI, R., YARAHMADI, M., 2009. Hydrodynamic and kinetic characterization of industrial columns in rougher circuit. Miner. Engineering, 22, 357-365.
  • NEETHLING, S.J., CILLIERS, J.J., 2009. The entrainment factor in froth flotation: Model for particle size and other operating parameter effects. Int. J. Miner. Process., 93, 141-148.
  • STEVENSON, P., 2007. Convective-dispersive gangue transport in flotation column. Chemical Engineering Science, 62, 5736 – 5744.
  • ŞAHBAZ, O., UÇAR, A., ÖTEYAKA, B., TAŞ, O. Ö., ÖZDEMİR, O., 2017. Separation of colemanite from tailings using the pilot scale flotation column. Powder Technology, 309, 31-36.
  • RUBINSTEIN, C.B., 1995. Column Flotation: Processes. Designs and Practices, USA, 296.
  • TAO, D. LUTTRELL, G.H., YOON R. H., 2000. A parametric study of froth stability and its effect on column flotation of fine particles. Int. J. Miner. Process. 59, 1, 25–43.
  • TRAHAR, W.J., 1981. A Rational Interpretation of Particle Size in Flotation. Int. J. of Miner. Process. 8, 4, 289-327.
  • YIANATOS, J.B., BERGH L.G., CORTÉS, G.A., 1998. Froth zone modelling of an industrial flotation column. Miner. Engineering, 11, 5, 423-435.
  • YIANATOS, J.B., MOYS, M.H., CONTRERAS, F., VILLANUEVA, A., 2008. Froth recovery of industrial flotation cells. Miner. Engineering 21, 817–825.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f59d350d-12bb-45d3-95a8-0a6979185c7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.