Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, a 2D numerical modeling of sound wave propagation in a shallow water medium that acts as a waveguide, are presented. This modeling is based on the method of characteristic which is not constrained by the Courant–Friedrichs–Lewy (CFL) condition. Using this method, the Euler time-dependent equations have been solved under adiabatic conditions inside of a shallow water waveguide which is consists of one homogeneous environment of water over a rigid bed. In this work, the stability and precision of the method of characteristics (MOC) technique for sound wave propagation in a waveguide were illustrated when it was applied with the semi-Lagrange method. The results show a significant advantage of the method of characteristics over the finite difference time domain (FDTD) method.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
407--412
Opis fizyczny
Bibliogr. 49 poz., rys., wykr.
Twórcy
- Faculty of Naval Aviation, Malek Ashtar University of Technology Iran
Bibliografia
- 1. Ali K.K., Yilmazer R., Baskonus H.M., Bulut H. (2020), Modulation instability analysis and analytical solutions to the system of equations for the ion sound and Langmuir waves, Physica Scripta, 95(6): 065602, https://doi.org/10.1088/1402-4896/ab81bf.
- 2. Ara Y., Okubo K., Tagawa N., Tsuchiya T., Ishizuka T. (2011), A novel numerical simulation of sound wave propagation using sub-grid CIP-MOC method, 2011 IEEE International Ultrasonics Symposium, pp. 760-763, https://doi.org/10.1109/ULTSYM.2011.6293349
- 3. Ascher, U., van den Doel, K. (2013), Fast Chaotic Artificial Time Integration, [In:] The Courant-Friedrichs-Lewy (CFL) Condition: 80 Years After Its Discovery, C.A. de Moura, C.S. Kubrusly (Eds.), pp. 147-155, Birkhäuser, Boston, https://doi.org/10.1007/978-0-8176-8394-8_10.
- 4. Ayas H., Chabaat M., Amara L. (2019), Dynamic analysis of a cracked bar by the method of characteristics, International Journal of Structural Integrity, 10(4): 438-453, https://doi.org/10.1108/IJSI-01-2018-0001.
- 5. Cao F., Liu J. (2020), Nonlinear partial differential equation model-based coordination control for a master-slave two-link rigid-flexible manipulator with vibration repression, Journal of Computational and Nonlinear Dynamics, 16(2): 021007, https://doi.org/10.1115/1.4049219.
- 6. Cho S.Y., Boscarino S., Russo G., Yun S.-B. (2021), Conservative semi-Lagrangian schemes for kinetic equations. Part I: Reconstruction, Journal of Computational Physics, 432: 110159, https://doi.org/10.1016/j.jcp.2021.110159.
- 7. Costa G., Montemurro M., Pailhès J. (2021), NURBS hyper-surfaces for 3D topology optimization problems, Mechanics of Advanced Materials and Structures, 28(7): 665-684, https://doi.org/10.1080/15376494.2019.1582826
- 8. Domingues M.O., Gomes S.M., Roussel O., Schneider K. (2013), Space-time adaptive multiresolution techniques for compressible Euler equations, [In:] The Courant-Friedrichs-Lewy (CFL) Condition: 80 Years After Its Discovery, C.A. de Moura, C.S. Kubrusly (Eds.), Birkhäuser, Boston, pp. 101-117, https://doi.org/10.1007/978-0-8176-8394-8_7
- 9. Duan W., Kirby R. (2019), Guided wave propagation in buried and immersed fluid-filled pipes: Application of the semi analytic finite element method, Computers Structures, 212: 236-247, https://doi.org/10.1016/j.compstruc.2018.10.020
- 10. Duan W., Kirby R. (2020), A numerical approach for calculation of characteristics of edge waves in three-dimensional plates, Journal of Theoretical and Computational Acoustics, 29(02): 2050014, https://doi.org/10.1142/S2591728520500140
- 11. Fievisohn R.T., Yu K.H. (2016), Steady-state analysis of rotating detonation engine flowfields with the method of characteristics, Journal of Propulsion and Power, 33(1): 89-99, https://doi.org/10.2514/1.B36103.
- 12. Fukuda A., Okubo K., Oshima T., Tsuchiya T., Kanamori M. (2018), Numerical analysis of three-dimensional acoustic field with background flow using constrained interpolation profile method, Japanese Journal of Applied Physics, 57(7S1): 07LC09, https://doi.org/10.7567/jjap.57.07lc09.
- 13. Gao W., Veeresha P., Prakasha D.G., Baskonus H.M. (2021), New numerical simulation for fractional Benney-Lin equation arising in falling film problems using two novel techniques, Numerical Methods for Partial Differential Equations, 37(1): 210-243, https://doi.org/10.1002/num.22526.
- 14. Gendre F., RicotD., Fritz, G., Sagaut P. (2017), Grid refinement for aeroacoustics in the lattice Boltzmann method: A directional splitting approach, Physical Review E, 96(2): 023311, https://doi.org/10.1103/PhysRevE.96.023311.
- 15. Hersh R. (2013), Mathematical intuition: Poincaré, Pólya, Dewey, [In:] The Courant-Friedrichs-Lewy (CFL) Condition: 80 Years After its Discovery, C.A. de Moura, C.S. Kubrusly (Eds.), pp. 9-30, Birkhäuser, Boston, https://doi.org/10.1007/978-0-8176-8394-8_2.
- 16. Hosseini S.H., Akbarinasab M., KhalilabadiM. R. (2018), Numerical simulation of the effect internal tide on the propagation sound in the Oman Sea, Journal of the Earth and Space Physics, 44(1): 215-225, https://doi.org/10.22059/jesphys.2018.221834.1006867.
- 17. Jeltsch R., Kumar H. (2013), Three-dimensional plasma arc simulation using resistive MHD, [In:] The Courant-Friedrichs-Lewy (CFL) Condition: 80 Years After its Discovery, C.A. de Moura, C.S. Kubrusly (Eds.), pp. 31-43, Birkhäuser, Boston, https://doi.org/10.1007/978-0-8176-8394-8_3.
- 18. Jena R.M., Chakraverty S., Baleanu D. (2019), On new solutions of time-fractional wave equations arising in shallow water wave propagation, Mathematics, 7(8): 722, https://doi.org/10.3390/math7080722.
- 19. Jewell J. (2019), Higher-order Runge-Kutta type schemes for the method of characteristics, UVM Student Research Conference, https://scholarworks.uvm.edu/src/2019/program/355.
- 20. Jiang T., Guo P., Wu J. (2020), One‐sided on‐demand communication technology for the semi‐Lagrange scheme in the YHGSM, Concurrency and Computation: Practice and Experience, 32(7): e5586, https://doi.org/10.1002/cpe.5586.
- 21. Jihui W., GuijuanL., Bing, J., Zhenshan, W., Rui W. (2020), Numerical computation on the scattering sound field distribution of rigid sphere in shallow water waveguide, IOP Conference Series: Materials Science and Engineering, 780: 032058, https://doi.org/10.1088/1757-899X/780/3/032058.
- 22. Kauffmann T., Kocar I., Mahseredjian J. (2018), New investigations on the method of characteristics for the evaluation of line transients, Electric Power Systems Research, 160: 243-250, https://doi.org/10.1016/j.epsr.2018.03.004.
- 23. Khalilabadi M. R. (2016a), A numerical study of internal tide generation due to interaction of barotropic tide with bottom topography in the Oman Gulf, Journal of the Earth and Space Physics, 42(3): 645-656, https://dx.doi.org/10.22059/jesphys.2016.57903.
- 24. Khalilabadi M.R. (2016b), The effect of meteorological events on sea surface height variations along the northwestern Persian Gulf, Current Science (00113891), 110(11): 2138-2141, https://doi.org/10.18520/cs/v110/i11/2138-2141.
- 25. Khalilabadi M.R. (2016c), Tide-surge interaction in the Persian Gulf, Strait of Hormuz and the Gulf of Oman, Weather, 71(10): 256-261, https://doi.org/10.1002/wea.2773.
- 26. Khalilabadi M.R., Sadrinassab M., Chegini V., Akbarinassab M. (2015), Internal wave generation in the Gulf of Oman (outflow of Persian Gulf), Indian Journal of Geo-Marine Sciences, 44(03): 371-375, http://nopr.niscair.res.in/handle/123456789/34692.
- 27. Kirby R., Duan W. (2018), Modelling sound propagation in the ocean: A normal mode approach using finite elements, [In:] Australian Acoustical Society Annual Conference, AAS 2018, pp. 530-539, Australian Acoustical Society, http://hdl.handle.net/10453/139710.
- 28. Lax P.D. (2013), Stability of difference schemes, [In:] The Courant-Friedrichs-Lewy (CFL) Condition: 80 Years After Its Discovery, C.A. de Moura, C.S. Kubrusly (Eds.), pp. 1-7, Birkhäuser, Boston, https://doi.org/10.1007/978-0-8176-8394-8_1.
- 29. LeFloch P.G. (2013), A Framework for Late-Time/Stiff Relaxation Asymptotics, [In:] The Courant-Friedrichs-Lewy (CFL) Condition: 80 Years After Its Discovery, C.A. de Moura, C.S. Kubrusly (Eds.), pp. 119-137, Birkhäuser, https://doi.org/10.1007/978-0-8176-8394-8_8.
- 30. Li C., Campbell B.K., Liu Y., Yue D.K. (2019), A fast multi-layer boundary element method for direct numerical simulation of sound propagation in shallow water environments, Journal of Computational Physics, 392, 694-712, https://doi.org/10.1016/j.jcp.2019.04.068.
- 31. Li N., Zhu H., Wang X., Xiao R., Xue Y., Zheng G. (2021), Characteristics of very low frequency sound propagation in full waveguides of shallow water, Sensors, 21(1), 192, https://doi.org/10.3390/s21010192.
- 32. Liu Z. (2021), 5 - The method of characteristics, [In:] Deterministic Numerical Methods for Unstructured-Mesh Neutron Transport Calculation, L. Cao, H. Wu (Eds.), pp. 73-108, Woodhead Publishing, https://doi.org/10.1016/B978-0-12-818221-5.00010-6.
- 33. Mahpeykar O., Khalilabadi M.R. (2021), Numerical modelling the effect of wind on water level and evaporation rate in the Persian Gulf, International Journal of Coastal and Offshore Engineering, 6(1): 47-53.
- 34. Matsumura Y., Okubo K., Tagawa N., TsuchiyaT., Ishizuka, T. (2015), Hybrid MM-MOC-based numerical simulation of acoustic wave propagation with non-uniform grid and perfectly matched layer absorbing boundaries, 2015 IEEE International Ultrasonics Symposium (IUS), pp. 1-4, https://doi.org/10.1109/ULTSYM.2015.0443.
- 35. Matsumura Y., Okubo K., Tagawa N., Tsuchiya T., Ishizuka T. (2017), Evaluation of numerical simulation of acoustic wave propagation using method of characteristics-based constrained interpolation profile (CIP-MOC) method with non-uniform grids, Acoustical Science and Technology, 38(1): 31-34, https://doi.org/10.1250/ast.38.31.
- 36. Mazumdar T., Gupta A. (2018), Application of Krylov acceleration technique in method of characteristics-based neutron transport code, Nuclear Science and Engineering, 192(2): 153-188, https://doi.org/10.1080/00295639.2018.1499340.
- 37. Mollaesmaeilpour S., Mohammad Mahdizadeh M., Hasanzade S., Khalilabadi M.R. (2019), The study of hydrophysical properties of the northern Arabian Sea during monsoon: A numerical study, Hydrophysics, 5(1): 47-59.
- 38. Nakamura T., Tanaka R., Yabe T., Takizawa K. (2001), Exactly conservative semi-Lagrangian scheme for multi-dimensional hyperbolic equations with directional splitting technique, Journal of Computational Physics, 174(1): 171-207, https://doi.org/10.1006/jcph.2001.6888.
- 39. Oshima T., Hiraguri Y., Imano M. (2014), Geometry reconstruction and mesh generation techniques for acoustic simulations over real-life urban areas using digital geographic information. Acoustical Science and Technology, 35(2): 108-118, https://doi.org/10.1250/ast.35.108.
- 40. Piao X., Kim P., Kim D. (2018), One-step L(α)-stable temporal integration for the backward semi-Lagrangian scheme and its application in guiding center problems, Journal of Computational Physics, 366: 327-340, https://doi.org/10.1016/j.jcp.2018.04.019.
- 41. Rhebergen S., Cockburn B. (2013), Space-time hybridizable discontinuous Galerkin method for the advection-diffusion equation on moving and deforming meshes, [In:] The Courant-Friedrichs-Lewy (CFL) Condition: 80 Years After its Discovery C.A. de Moura, C.S. Kubrusly (Eds.), pp. 45-63, Birkhäuser, Boston, https://doi.org/10.1007/978-0-8176-8394-8_4.
- 42. Saadat M.H., Bösch F., Karlin I.V. (2020), Semi-Lagrangian lattice Boltzmann model for compressible flows on unstructured meshes, Physical Review E, 101(2): 023311, https://doi.org/10.1103/PhysRevE.101.023311.
- 43. Schneider K., Kolomenskiy D., Deriaz E. (2013), Is the CFL condition sufficient? Some remarks, [In:] The Courant-Friedrichs-Lewy (CFL) Condition: 80 Years After its Discovery, C.A. de Moura, C.S. Kubrusly (Eds.), pp. 139-146, Birkhäuser, Boston, https://doi.org/10.1007/978-0-8176-8394-8_9.
- 44. Song P., Zhang Z., Zhang Q., Liang L., Zhao Q. (2020), Implementation of the CPU/GPU hybrid parallel method of characteristics neutron transport calculation using the heterogeneous cluster with dynamic workload assignment, Annals of Nuclear Energy, 135: 106957, https://doi.org/10.1016/j.anucene.2019.106957.
- 45. Subbotina N.N., Krupennikov E.A. (2017), The method of characteristics in an identification problem, Proceedings of the Steklov Institute of Mathematics, 299(1): 205-216, https://doi.org/10.1134/S008154381709022X.
- 46. Twyman J. (2018), Transient flow analysis using the method of characteristics MOC with five-point interpolation scheme, Obras y Proyectos, 24, 62-70, https://doi.org/10.4067/s0718-28132018000200062.
- 47. Verlinden C.M.A., Sarkar J., Cornuelle B.D., Kuperman W.A. (2017), Determination of acoustic waveguide invariant using ships as sources of opportunity in a shallow water marine environment, The Journal of the Acoustical Society of America, 141(2): EL102-EL107, https://doi.org/10.1121/1.4976112.
- 48. Wang W., Yang D., Shi J. (2020), A prediction method for acoustic intensity vector field of elastic structure in shallow water waveguide, Shock and Vibration, 2020: article ID 5389719, https://doi.org/10.1155/2020/5389719.
- 49. Yabe T., Xiao F., Utsumi T. (2001), The constrained interpolation profile method for multiphase analysis, Journal of Computational Physics, 169(2): 556-593, https://doi.org/10.1006/jcph.2000.6625.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f598475f-dcc6-41e2-a498-5028ca7682a8