PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling and analysis of fibre microlenses with ray-tracing and finite-difference methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fibre optic microlenses are small optical elements formed on the end-faces of optical fibres. Their dimensions range from a few tens to hundreds of micrometres. In the article, four optical fibre microlenses are modelled and analysed. Microlenses are used for light beam manipulation and quantitative metrics are needed to evaluate the results, for example, the size of focusing spot or intensity distribution. All four lenses tested are made of rods of the same refractive index; they were welded to a single-mode fibre. Two modelling methods were used to analyse the lenses: ray-tracing and finite-difference time-domain. The ray-tracing algorithm moves rays from one plane to another and refracts them on the surfaces. Finite-difference time-domain consists of calculating Maxwell’s equations by replacing spatial and temporal derivatives by quotients of finite differences. In this paper, the results of the microlenses analyses obtained from ray-tracing and finite-difference timedomain methods were compared. Both mets of analysis showed the presence of undesirable side lobes related to lens design, namely rods too long for lens fabrication. The test results were compared with the measurements made with the knife-edge method. The use of a single tool to determine parameters of an optical fibre lens does not allow for precise determination of its properties. It is necessary to use different tools and programs. This allows a complete analysis of the beam parameters, letting us find the causes of technical issues that limit the performance of the lenses.
Rocznik
Strony
art. no. e140147
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Microsystem, Wroclaw University of Science and Technology, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
  • Faculty of Microsystem, Wroclaw University of Science and Technology, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
  • Faculty of Microsystem, Wroclaw University of Science and Technology, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
Bibliografia
  • [1] Tekin, T. Review of packaging of optoelectronic, photonic, and MEMS components. IEEE J. Sel. Top. Quantum Electron. 17, 704–719 (2011). https://doi.org/10.1109/JSTQE.2011.2113171
  • [2] Zheng, W. Optic Lenses Manufactured on Fibre Ends. in 2015 Optoelectronics Global Conference (OGC) 1–7 (IEEE, 2015). https://doi.org/10.1109/OGC.2015.7336855
  • [3] Corning SMF-28 Ultra Optical Fibre. Corning. https://www.corning.com/media/worldwide/coc/documents/Fiber/SMF-28%20Ultra.pdf (2014) (Accessed Sept. 3rd, 2021) .
  • [4] Soldano, L. B. & Pennings, E. C. M. Optical multi-mode interference devices based on self-imaging: principles and applications. J. Light. Technol. 13, 615–627 (1995). https://doi.org/10.1109/50.372474
  • [5] Yuan, W., Brown, R., Mitzner, W., Yarmus, L. & Li, X. Superachromatic monolithic microprobe for ultrahigh-resolution endoscopic optical coherence tomography at 800 nm. Nat. Commun. 8, 1531 (2017). https://doi.org/10.1038/s41467-017-01494-4
  • [6] Liu, Z. L. et al. Fabrication and application of a non-contact double-tapered optical fibre tweezers. Opt. Express 25, 22480–22489 (2017). https://doi.org/10.1364/oe.25.022480
  • [7] Astratov, V. et al. Photonic Nanojets for Laser Surgery. (SPIE Newsroom, 2010).
  • [8] Pahlevaninezhad, H. et al. Nano-optic endoscope for highresolution optical coherence tomography in vivo. Nat. Photonics 12, 540–547 (2018). https://doi.org/10.1038/s41566-018-0224-2
  • [9] Siegman, A. E. Lasers. (University Science Books, 1986).
  • [10] Ross, T. S. Laser Beam Quality Metrics. Laser Beam Quality Metrics (SPIE, 2013).
  • [11] OSLO Optics Software for Layout and Optimization. Optics Reference. (Lambda Research Corporation, Littleton, MA, USA, 2011). https://www.lambdares.com/wp-content/uploads/support/oslo/oslo_edu/oslo-optics-reference.pdf
  • [12] Fibre Lenses. Fibrain. https://photonics.fibrain.com/produkt/fibrelenses,640.html#zdjecia (2020) (Accessed Aug. 29th, 2020) .
  • [13] Parsons, J., Burrows, C. P., Sambles, J. R. & Barnes, W. L. A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures. J. Mod. Opt. 57, 356–365 (2010). https://doi.org/10.1080/09500341003628702
  • [14] Schneider, J.B. Understanding the Finite-Difference Time-Domain Method. https://eecs.wsu.edu/~schneidj/ufdtd/ufdtd.pdf (2021).
  • [15] Bachmann, L., Zezell, D. M. & Maldonado, E. P. Determination of beam width and quality for pulsed lasers using the knife‐edge method. Instrum. Sci. Technol. 31, 47–52 (2003). https://doi.org/10.1081/CI-120018406
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f592fa20-5f07-4d37-8d27-0cc0bd0ea462
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.