PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monte Carlo Calculation of linear attenuation coefficients and photon scattering properties of novel concretes loaded with Osmium, Iridium and Barite nanoparticles

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: Recent studies have shown that the use of high-density nanoparticles (NPs) in concrete composition improves its radiation shielding properties. In the present study, the linear attenuation coefficients and photon scattering properties of newly developed high-density Nano-concretes have been calculated using the MCNPX Monte Carlo code. Material and methods: The shielding properties of Nano-concretes containing 10%, 20%, and 30% weight percentage of Osmium, Iridium and Barite NPs (100 nm) as well as ordinary concrete were investigated. The 6 and 18 MV photon beams of Varian Linac and 60Co photons were used for simulation. Photon scattering flux was calculated for all Nano-concretes with 30 wt% of NPs and ordinary concrete at different angles. Results: In general, by adding Iridium, Osmium and Barite NPs to ordinary concrete, the linear attenuation coefficients increased. Despite a lower density relative to Iridium and Osmium, Nano-concretes containing Barite exhibited a higher linear attenuation coefficient due to their higher electron density. Conclusions: The results revealed a dependence between the scattered photon flux and the effective atomic number of Nano-concretes. With increasing the atomic number of fillers, the intensity of the scattered photon flux enlarged. Also, the scattered flux was higher for all types of concretes at 180 degrees relative to other angles.
Rocznik
Strony
291--298
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Medical Radiation Sciences Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
  • Medical Radiation Sciences Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
  • Radio-Oncology Department, Shahid Madani Hospital, Tabriz, Iran
  • Medical Radiation Sciences Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
Bibliografia
  • 1. Tekin H, Sayyed M, Issa SA. Gamma radiation shielding properties of the hematite-serpentine concrete blended with WO3 and Bi2O3 micro and nano particles using MCNPX code. Radiation Physics and Chemistry. 2018;150:95-100. https://doi.org/10.1016/j.radphyschem.2018.05.002
  • 2. Janković K, Stanković S, Bojović D, Stojanović M, Antić L. The influence of nano-silica and barite aggregate on properties of ultra high performance concrete. Construction and Building Materials. 2016;126:147-156. https://doi.org/10.1016/j.conbuildmat.2016.09.026
  • 3. Mesbahi A, Mansouri E, Jangjoo AG, Tekin HO. Radiation protection characteristics of nano-concretes against photon and neutron beams. Smart Nanoconcretes and Cement-Based Materials: Elsevier; 2020:447-460. https://doi.org/10.1016/B978-0-12-817854-6.00019-2
  • 4. Malekzadeh R, Mehnati P, Sooteh MY, Mesbahi A. Influence of the size of nano-and microparticles and photon energy on mass attenuation coefficients of bismuth-silicon shields in diagnostic radiology. Radiological Physics and Technology. 2019;12(3):325-334. https://doi.org/10.1007/s12194-019-00529-3
  • 5. Zabihzadeh M, Ay MR, Allahverdi M, Mesbahi A, Mahdavi SR, Shahriari M. Monte Carlo estimation of photoneutrons contamination from high-energy X-ray medical accelerators in treatment room and maze: a simplified model. Radiation Protection Dosimetry. 2009;135(1):21-32. https://doi.org/10.1093/rpd/ncp097
  • 6. Juste B, Morató S, García C, Miró R, Verdú G. Monte Carlo code application to the study of 3D neutrons distribution in a radiotherapy bunker and validation with experimental measurements. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2020;954:161248. https://doi.org/10.1016/j.nima.2018.09.083
  • 7. Khaldari R, Mesbahi A, Kara U. Monte Carlo calculation of shielding properties of newly developed heavy concretes for megavoltage photon beam spectra used in radiation therapy. Iranian Journal of Medical Physics. 2016;13(4):250-260. https://dx.doi.org/10.22038/ijmp.2017.19206.1175
  • 8. Ahmad I, Shahzada K, Ahmad MI, et al. Densification of Concrete using Barite as Fine Aggregate and its Effect on Concrete Mechanical and Radiation Shielding Properties. Journal of Engineering Research. 2019;7(4):81-95.
  • 9. Mortazavi S, Mosleh-Shirazi M, Roshan-Shomal P, Raadpey N, Baradaran-Ghahfarokhi M. High-performance heavy concrete as a multi-purpose shield. Radiation Protection Dosimetry. 2010;142(2-4):120-124. https://doi.org/10.1093/rpd/ncq265
  • 10. Tekin H, Sayyed M, Altunsoy E, Manici T. Shielding properties and effects of WO3 and PbO on mass attenuation coefficients by using MCNPX code. Dig. J. Nanomater. Biostruct. 2017;12(3):861-867.
  • 11. Agar O, Tekin HO, Sayyed M, Korkmaz ME, Culfa O, Ertugay C. Experimental investigation of photon attenuation behaviors for concretes including natural perlite mineral. Results in Physics. 2019;12:237-243. https://doi.org/10.1016/j.rinp.2018.11.053
  • 12. Rajavikraman R. Novel method for radiation shielding using nano-concrete composite. Int J Mater Sci Eng. 2013;1:20-23. https://doi.org/10.12720/ijmse.1.1.20-23
  • 13. Krishna BG, Prasad P, Sahu V, Sahu JP, Agarwal A. Beta Backscattering and Gamma Radiation Absorption Characteristics of Carbon Nanoparticles Contained Concrete Composite. Paper presented at: Nano Hybrids and Composites 2017. https://doi.org/10.4028/www.scientific.net/NHC.17.31
  • 14. Tekin HO, Singh VP, Manici T. Effects of micro-sized and nano-sized WO3 on mass attenauation coefficients of concrete by using MCNPX code. Applied Radiation and Isotopes. 2017;121:122-125. https://doi.org/10.1016/j.apradiso.2016.12.040
  • 15. Verdipoor K, Alemi A, Mesbahi A. Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 Micro and Nano-particles for radiation shielding. Radiation Physics and Chemistry. 2018;147:85-90. https://doi.org/10.1016/j.radphyschem.2018.02.017
  • 16. Facure A, Silva A, Rivera J, Falcao R. Neutron scattering in concrete and wood: Part II-oblique incidence. Radiation Protection Dosimetry. 2008;128(3):367-374. https://doi.org/10.1093/rpd/ncm378
  • 17. Abdo AE-S. Calculation of the cross-sections for fast neutrons and gamma-rays in concrete shields. Annals of Nuclear Energy. 2002;29(16):1977-1988. https://doi.org/10.1016/S0306-4549(02)00019-1
  • 18. Mesbahi A, Azarpeyvand A-A, Shirazi A. Photoneutron production and backscattering in high density concretes used for radiation therapy shielding. Annals of Nuclear Energy. 2011;38(12):2752-2756. https://doi.org/10.1016/j.anucene.2011.08.023
  • 19. Mesbahi A, Azarpeyvand A-A, Khosravi HR. Does concrete composition affect photoneutron production inside radiation therapy bunkers? Japanese Journal of Radiology. 2012;30(2):162-166. https://doi.org/10.1007/s11604-011-0030-y
  • 20. Choi CH, Park S-Y, Park JM, Chun M, Kim J-i. Monte Carlo simulation of neutron dose equivalent by photoneutron production inside the primary barriers of a radiotherapy vault. Physica Medica. 2018;48:1-5. https://doi.org/10.1016/j.ejmp.2018.03.009
  • 21. Mesbahi A, Alizadeh G, Seyed-Oskoee G, Azarpeyvand A-A. A new barite-colemanite concrete with lower neutron production in radiation therapy bunkers. Annals of Nuclear Energy. 2013;51:107-111. https://doi.org/10.1016/j.anucene.2012.07.039
  • 22. Mesbahi A, Khaldari R. Neutron and photon scattering properties of high density concretes used in radiation therapy facilities: A Monte Carlo study. Polish Journal of Medical Physics and Engineering. 2017;23(3):61. https://doi.org/10.1515/pjmpe-2017-0011
  • 23. Pelowitz DB. MCNPX USER'S MANUAL Version 2.7. 0-LA-CP-11-00438. Los Alamos National Laboratory. 2011.
  • 24. Sheikh‐Bagheri D, Rogers D. Monte Carlo calculation of nine megavoltage photon beam spectra using the BEAM code. Medical Physics. 2002;29(3):391-402. https://doi.org/10.1118/1.1445413
  • 25. Mansouri E, Mesbahi A, Malekzadeh R, Mansouri A. Shielding characteristics of nanocomposites for protection against X-and gamma rays in medical applications: effect of particle size, photon energy and nanoparticle concentration. Radiation and Environmental Biophysics. 2020:1-18. https://doi.org/10.1007/s00411-020-00865-8
  • 26. Waly E-SA, Bourham MA. Comparative study of different concrete composition as gamma-ray shielding materials. Annals of Nuclear Energy. 2015;85:306-310. https://doi.org/10.1016/j.anucene.2015.05.011
  • 27. Ghasemi-Jangjoo A, Ghiasi H. MC safe bunker designing for an 18 MV linac with nanoparticles included primary barriers and effect of the nanoparticles on the shielding aspects. Reports of Practical Oncology & Radiotherapy. 2019;24(4):363-368. https://doi.org/10.1016/j.rpor.2019.05.009
  • 28. Un A, Demir F. Determination of mass attenuation coefficients, effective atomic numbers and effective electron numbers for heavyweight and normal-weight concretes. Applied Radiation and Isotopes. 2013;80:73-77. https://doi.org/10.1016/j.apradiso.2013.06.015
  • 29. Norhasri MM, Hamidah M, Fadzil AM. Applications of using nano material in concrete: A review. Construction and Building Materials. 2017;133:91-97. https://doi.org/10.1016/j.conbuildmat.2016.12.005
  • 30. Swanson WP. Radiological safety aspects of the operation of electron linear accelerators. 1979.
  • 31. Raso DJ. Monte Carlo calculations on the reflection and transmission of scattered gamma rays. Nuclear Science and Engineering. 1963;17(3):411-418. https://doi.org/10.13182/NSE63-A17390
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f592daf7-3a84-4041-873f-d625eb3ac864
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.