PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of high-density sound absorbing materials for improving low-frequency spectral flatness in room response

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A room impulse response obtained for complex-valued boundary conditions on wall surfaces was used to determine the frequency response of arbitrary shaped room. Based on theoretical findings, a numerical procedure was developed to test the effectiveness of a high-density sound absorbing material in improving low-frequency spectral flatness. The impedance of absorbing material was determined using the two-parameter Komatsu model. The simulation results have shown that the smoothing effect of the frequency response becomes apparent when the thickness of absorbing material is large enough. This is because as the material thickness increases, the sound absorption tends to increase at lower frequencies.
Rocznik
Strony
art. no. 2021111
Opis fizyczny
Bibliogr. 19 poz., 1 rys., wykr.
Twórcy
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw
Bibliografia
  • 1. S. Maluski, B. Gibbs. The effect of construction material, contents and room geometry on the sound field in dwellings at low frequencies. Applied Acoustics, 65(1):31-44, 2004. DOI:10.1016/S0003-682X(03)00116-6
  • 2. T. Welti, A. Devantier. Low-frequency optimization using multiple subwoofers. J. Audio Eng. Soc., 54(5):347-364, 2006.
  • 3. M. Meissner, K. Wiśniewski. Influence of room modes on low-frequency transients: theoretical modeling and numerical predictions. J. Sound Vib., 448:19-33, 2019. DOI:10.1016/j.jsv.2019.02.012
  • 4. M. Meissner, K. Wiśniewski. Investigation of damping effects on low-frequency steady-state acoustical behaviour of coupled spaces. R. Soc. Open Sci., 7(8):200514, 2020. DOI:10.1098/rsos.200514
  • 5. M. Meissner. Application of modal expansion method for sound prediction in enclosed spaces subjected to boundary excitation. J. Sound Vib., 500:116041, 2021. DOI:10.1016/j.jsv.2021.116041
  • 6. C. Papadopoulos. Redistribution of the low frequency acoustic modes of a room: a finite element-based optimisation method. Applied Acoustics, 62(11):1267-1285, 2001. DOI:10.1016/S0003-682X(01)00002-0
  • 7. Z. Xiaotian, Z. Zhemin, C. Jianchun. Using optimized surface modifications to improve low frequency response in a room. Applied Acoustics, 65(9):841-860, 2004. DOI:10.1016/j.apacoust.2004.03.002
  • 8. J. Rindel. Modal energy analysis of nearly rectangular rooms at low frequencies. Acta Acustica united with Acustica, 101(6):1211-1221, 2015. DOI:10.3813/AAA.918914
  • 9. J. Rindel. Preferred dimension ratios of small rectangular rooms. JASA Express Letters, 1(2):021601, 2021. DOI:10.1121/10.0003450
  • 10. J. Sarris. A new method for the determination of acoustically good room dimension ratios. AES 136th Convention, Berlin, Convention paper 9047, 2014.
  • 11. M. Meissner. A novel method for determining optimum dimension ratios for small rectangular rooms. Archives of Acoustics, 43(2):217-225, 2018. DOI:10.24425/122369
  • 12. H. Fuchs, X. Zha, H. Drotleff. Relevance and treatment of the low frequency domain for noise control and acoustic comfort in rooms. Acta Acustica united with Acustica, 91(5):920-928, 2005.
  • 13. M. Meissner, T.G. Zieliński. Low-frequency prediction of steady-state room response for different configurations of designed absorbing materials on room walls. Proceedings of the 29th International Conference on Noise and Vibration Engineering (ISMA 2020) and the 8th International Conference on Uncertainty in Structural Dynamics (USD 2020), 463-477, 2020.
  • 14. T. Vigran. Building acoustics. CRC Press, London, 2008.
  • 15. S. Damelin, W. Miller Jr. The mathematics of signal processing. Cambridge University Press, New York, 2012.
  • 16. L. Kinsler, A. Frey, A. Coppens, J. Sander. Fundamentals of acoustics. 4th edn, John Wiley & Sons, New York, 2000.
  • 17. T. Cox, P. D'Antonio. Acoustic absorbers and diffusers: theory, design and application. 2nd edn, Taylor & Francis, New York, 2009.
  • 18. T. Komatsu. Improvement of the Delany-Bazley and Miki models for fibrous sound-absorbing materials. Acoust. Sci. Technol., 29(2):121-129, 2008. DOI:10.1250/ast.29.121
  • 19. A. Gray, J. Markel. A spectral-flatness measure for studying the autocorrelation method of linear prediction of speech analysis. IEEE Trans. Acoust. Speech Signal Process., 22(3):207-217, 1974. DOI:10.1109/TASSP.1974.1162572
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f58f24e6-0acf-46d4-ab77-bbf95a3dc28f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.