Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Regarding the geometry of a real normed space X, we mainly introduce a notion of approximate bisectrix-orthogonality on vectors x,y∈X as follows:... [formula] We study the class of linear mappings preserving the approximately bisectrix-orthogonality ε⊥W. In particular, we show that if T:X→Y is an approximate linear similarity, then xδ⊥Wy →Txθ⊥WTy(x,y∈X) for any δ∈[0,1) and certain θ≥0.
Wydawca
Czasopismo
Rocznik
Tom
Strony
167--176
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran
Bibliografia
- [1] C. Alsina, J. Sikorska and M. Santos Tom´as, Norm Derivatives and Characterizations of Inner Product Spaces, World Scientific, Hackensack, NJ, 2009.
- [2] D. Amir, Characterization of Inner Product Spaces, Birkh¨auser Verlag, Basel-Boston-Stuttgart, 1986.
- [3] G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J. 1 (1935), 169–172.
- [4] A. Blanco and A. Turnšek, On maps that preserves orthogonality in normed spaces, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), 709–716.
- [5] J. Chmieliński and P. Wójcik, Isosceles-orthogonality preserving property and its stability, Nonlinear Anal. 72 (2010), 1445–1453.
- [6] J. Chmieliński, Remarks on orthogonality pereserving mappings in normed spaces and some stability problems, Banach J. Math. Anal. (2007), no. 1, 117–124.
- [7] J. Chmieliński and P. Wójcik, On a p-orthogonality, Aequationes Math. 80 (2010), 45–55.
- [8] F. Dadipour, M. S. Moslehian, J. M. Rassias and S.-E. Takahasi, Characterization of a generalized triangle inequality in normed spaces, Nonlinear Anal-TMA 75 (2012), no. 2, 735–741.
- [9] R. C. James, Orthogonality in normed linear spaces, Duke Math. J. 12 (1945), 291–301.
- [10] D. Koldobsky, Operators preserving orthogonality are isometries, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 835–837.
- [11] L. Maligranda, Simple norm inequalities, Amer. Math. Monthly 113 (2006), 256–260.
- [12] P. M. Miličic, Sur la G-orthogonalit´e dans les espéaceésnormés, Math. Vesnik. 39 (1987), 325–334.
- [13] B. Mojškerc and A. Turnˇsek, Mappings approximately preserving orthogonality in normed spaces, Nonlinear Anal. 73 (2010), 3821–3831.
- [14] M. Mirzavaziri and M. S. Moslehian, Orthogonal constant mappings in isoceles orthogonal spaces, Kragujevac J. Math. 29 (2006), 133–140.
- [15] B. D. Roberts, On the geometry of abstract vector spaces, Tˆohoku Math. J. 39 (1934), 42–59.
- [16] P. Wójcik, Linear mappings preserving p-orthogonality, J. Math. Anal. Appl. 386 (2012), 171–176.
- [17] A. Zamani and M. S. Moslehian, Approximate Roberts orthogonality, Aequationes Math. (to appear) DOI 10.1007/s00010-013-0233-7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f58c4b81-fd9e-4147-a8c1-3280dd8e4394