PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biofunctionalization through the use of polyelectrolyte micelles and erythrocytes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biological functionalization is a critical area of research aimed at enhancing the functionality and application of biomaterials in various biomedical fields. One of the key aspects of biofunctionalization involves the addition of growth factors, which can significantly improve the biocompatibility of materials. Enhanced biocompatibility allows these materials to integrate more effectively with surrounding tissues, promoting their acceptance by the body and minimizing the risk of rejection or inflammation. This study is focused on investigations of the surface properties of polyelectrolyte layers, micelles, and complex systems utilizing red blood cells (RBCs) as carriers for growth factors. Through electrostatic interactions between negatively charged RBCs and positively charged polyelectrolytes, it becomes possible to modify red blood cells for use as effective delivery systems. Additionally, polyelectrolyte micelles can be employed for delivery purposes through grafting with suitable polymers. All of the tested surfaces exhibited hydrophilic characteristics, as indicated by measurements of the contact angle. Furthermore, the study determined the zeta potential of modified red blood cells and presented methods for the docking of vascular endothelial growth factor (VEGF) onto both RBCs and micelles. The obtained results highlight the potential of these biofunctionalized systems for improving therapeutic outcomes in regenerative medicine and drug delivery.
Rocznik
Strony
54--61
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr., zdj.
Twórcy
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow, Poland
  • Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40 St., Zabrze 41-800, Poland
  • AGH University of Krakow, Faculty of Physics and Applied Computer Science, Department of Medical Physics and Biophysics, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Krakow, Faculty of Physics and Applied Computer Science, Department of Medical Physics and Biophysics, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow, Poland
  • Department of Experimental Mechanics and Biomechanics, Faculty of Mechanical Engineering, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow, Poland
Bibliografia
  • [1] S. Tan, T. Wu, D. Zhang, Z. Zhang: Cell or Cell Membrane-Based Drug Delivery Systems. Theranostics 5 (2015) 863-881. https://doi.org/10.7150/thno.11852.
  • [2] H. Amani, H. Arzaghi, M. Bayandori, A.S. Dezfuli, H. Pazoki--Toroudi, A. Shafiee, L. Moradi: Controlling Cell Behavior through the Design of Biomaterial Surfaces: A Focus on Surface Modification Techniques. Adv Mater Interfaces 6 (2019). https://doi.org/10.1002/admi.201900572.
  • [3] E.Y. Xi Loh, M.B. Fauzi, M.H. Ng, P.Y. Ng, S.F. Ng, H. Ariffin, M.C.I. Mohd Amin: Cellular and Molecular Interaction of Human Dermal Fibroblasts with Bacterial Nanocellulose Composite Hydrogel for Tissue Regeneration. ACS Appl Mater Interfaces 10 (2018) 39532-39543. https://doi.org/10.1021/acsami.8b16645.
  • [4] L.-M. Petrila, F. Bucatariu, M. Mihai, C. Teodosiu: Polyelectrolyte Multilayers: An Overview on Fabrication, Properties, and Biomedical and Environmental Applications. Materials 14 (2021) 4152. https://doi.org/10.3390/ma14154152.
  • [5] D.F. Williams: Biocompatibility pathways and mechanisms for bioactive materials: The bioactivity zone. Bioact Mater 10 (2022) 306-322. https://doi.org/10.1016/j.bioactmat.2021.08.014.
  • [6] J. Saqib, I.H. Aljundi: Membrane fouling and modification using surface treatment and layer-by-layer assembly of polyelectrolytes: State-of-the-art review. Journal of Water Process Engineering 11 (2016) 68-87. https://doi.org/10.1016/j.jwpe.2016.03.009.
  • [7] C. Picart: Polyelectrolyte Multilayer Films: From Physico-Chemical Properties to the Control of Cellular Processes. Curr Med Chem 15 (2008) 685-697. https://doi.org/10.2174/092986708783885219.
  • [8] V.S. Meka, M.K.G. Sing, M.R. Pichika, S.R. Nali, V.R.M. Kolapalli, P. Kesharwani: A comprehensive review on polyelectrolyte complexes. Drug Discov Today 22 (2017) 1697-1706. https://doi.org/10.1016/j.drudis.2017.06.008.
  • [9] M. Schönhoff: Layered polyelectrolyte complexes: physics of formation and molecular properties. Journal of Physics: Condensed Matter 15 (2003) R1781-R1808. https://doi.org/10.1088/0953-8984/15/49/R01.
  • [10] M. Qi, G. Li, N. Yu, Y. Meng, X. Liu: Synthesis of thermo--sensitive polyelectrolyte complex nanoparticles from CS-g-PNIPAM and SA-g-PNIPAM for controlled drug release. Macromol Res 22 (2014) 1004-1011. https://doi.org/10.1007/s13233-014-2134-6.
  • [11] P.M. Glassman, C.H. Villa, A. Ukidve, Z. Zhao, P. Smith, S. Mitragotri, A.J. Russell, J.S. Brenner, V.R. Muzykantov: Vascular Drug Delivery Using Carrier Red Blood Cells: Focus on RBC Surface Loading and Pharmacokinetics. Pharmaceutics 12 (2020) 440. https://doi.org/10.3390/pharmaceutics12050440.
  • [12] L. Rossi, F. Pierigè, M.P. Aliano, M. Magnani: Ongoing Developments and Clinical Progress in Drug-Loaded Red Blood Cell Technologies. BioDrugs 34 (2020) 265-272. https://doi.org/10.1007/s40259-020-00415-0.
  • [13] A. Vincy, S. Mazumder, Amrita, I. Banerjee, K.C. Hwang, R. Vankayala: Recent Progress in Red Blood Cells-Derived Particles as Novel Bioinspired Drug Delivery Systems: Challenges and Strategies for Clinical Translation. Front Chem 10 (2022). https://doi.org/10.3389/fchem.2022.905256.
  • [14] R. Major, J.M. Lackner, M. Sanak, B. Major: Biomimetics in thin film design: Niche-like wrinkles designed for i-cell progenitor cell differentiation. Materials Science and Engineering: C 80 (2017) 379-386. https://doi.org/10.1016/j.msec.2017.06.005.
  • [15] G. Li, S. Song, T. Zhang, M. Qi, J. Liu: pH-sensitive polyelectrolyte complex micelles assembled from CS-g-PNIPAM and ALG-g-P(NIPAM-co-NVP) for drug delivery. Int J Biol Macromol 62 (2013) 203-210. https://doi.org/10.1016/j.ijbiomac.2013.08.041.
  • [16] D.R. Senger, S.J. Galli, A.M. Dvorak, C.A. Perruzzi, V.S. Harvey, H.F. Dvorak: Tumor Cells Secrete a Vascular Permeability Factor That Promotes Accumulation of Ascites Fluid. Science 219 (1983) 983-985. https://doi.org/10.1126/science.6823562.
  • [17] K. Holmes, O.L. Roberts, A.M. Thomas, M.J. Cross: Vascular endothelial growth factor receptor-2: Structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 19 (2007) 2003-2012. https://doi.org/10.1016/j.cellsig.2007.05.013.
  • [18] H.P. Fernandes, C.L. Cesar, M. de L. Barjas-Castro: Electrical properties of the red blood cell membrane and immunohematological investigation. Rev Bras Hematol Hemoter 33 (2011) 297-301. https://doi.org/10.5581/1516-8484.20110080.
  • [19] F. Tokumasu, G.R. Ostera, C. Amaratunga, R.M. Fairhurst: Modifications in erythrocyte membrane zeta potential by Plasmodium falciparum infection. Exp Parasitol 131 (2012) 245-251. https://doi.org/10.1016/j.exppara.2012.03.005.
  • [20] S. Łagan, A. Chojnacka-Brożek, A. Liber-Kneć, G. Malik: Surface free energy and roughness of flowable dental composites. Acta Bioeng Biomech 25 (2023). https://doi.org/10.37190/ABB-02306-2023-02.
  • [21] S.Z. Alshawwa, A.A. Kassem, R.M. Farid, S.K. Mostafa, G.S. Labib: Nanocarrier Drug Delivery Systems: Characterization, Limitations, Future Perspectives and Implementation of Artificial Intelligence. Pharmaceutics 14 (2022) 883. https://doi.org/10.3390/pharmaceutics14040883.
  • [22] P. Kurtyka, M. Kopernik, M. Kaczmarek, M. Surmiak, Ł. Major, R. Kustosz, J. Więcek, K. Kurtyka, A. Bartkowiak, R. Major: Biofunctional impact of textured coatings in the application of heart assist therapy. Archives of Civil and Mechanical Engineering 23 (2022) 31. https://doi.org/10.1007/s43452-022-00573-8.
  • [23] S.E.A. Gratton, P.A. Ropp, P.D. Pohlhaus, J.C. Luft, V.J. Madden, M.E. Napier, J.M. DeSimone: The effect of particle design on cellular internalization pathways. Proceedings of the National Academy of Sciences 105 (2008) 11613-11618. https://doi.org/10.1073/pnas.0801763105.
  • [24] R.A. Gittens, L. Scheideler, F. Rupp, S.L. Hyzy, J. Geis-Gerstorfer, Z. Schwartz, B.D. Boyan: A review on the wettability of dental implant surfaces II: Biological and clinical aspects. Acta Biomater 10 (2014) 2907-2918. https://doi.org/10.1016/j.actbio.2014.03.032.
  • [25] M. Behnecke, S. Petersen: Establishment of PEEK-Associated Drug Delivery Systems - Limits and Perspectives. Journal of Materials Science and Chemical Engineering 08 (2020) 32-41. https://doi.org/10.4236/msce.2020.810004.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f58b96d8-3b05-42cb-90d7-1306b8a0ad56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.