PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Nonlinear buckling mode transition analysis of axial-thermal-electrical‑loaded FG piezoelectric nanopanels incorporating nonlocal and couple stress tensors

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Piezoelectric nanostructures are one of the essential components in the design of electromechanical systems and devices at nanoscale. In the present exploration, a size-dependent panel model accommodating the both softening and stiffening features is introduced for nonlinear stability characteristics of functionally graded (FG) piezoelectric cylindrical nanopanels under combinations of axial mechanical load with external electric actuation and temperature change. In accordance with this objective, an efficient numerical strategy based upon the moving Kriging meshfree (MKM) technique is employed within the framework of the nonlocal couple stress (NCS) continuum elasticity. The established NCS-based numerical model has the capability to incorporate the buckling mode transition phenomenon as well as satisfying the function property of Kronecker delta via imposing essential boundary conditions with no use of predefined mesh and directly at the associated nodes. The NCS-based nonlinear equilibrium curves are traced including the modal transition corresponding to various parameter investigations of FG piezoelectric nanopanels. It is deduced that the nonlocal stress tensor leads to increase the difference between the minimum postbuckling loads associated with the first and second buckling modes, while the couple stress tensor causes to reduce it. It is also demonstrated that by changing the sign of electric actuation from negative to positive, the softening character of nonlocality as well as the strengthening character associated with the couple stress size dependency become a bit more significant. Furthermore, the roles of both unconventional stress tensors are more prominent in the value of the second bifurcation point in comparison with the first one.
Rocznik
Strony
art. no. e125
Opis fizyczny
Bibliogr. 64 poz., rys., tab., wykr.
Twórcy
autor
  • Wind and Vibration Engineering Research Center, Guangzhou University, Guangzhou 510006, China
autor
  • Wind and Vibration Engineering Research Center, Guangzhou University, Guangzhou 510006, China
  • College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
  • School of Science and Technology, The University of Georgia, 0171 Tbilisi, Georgia
autor
  • Department of Mechanical Engineering, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
Bibliografia
  • 1. Johar MA, Waseem A, Afifi Hassan M, Kang J-H, et al. Facile growth of high aspect ratio c-axis GaN nanowires and their application as flexible p-n NiO/GaN piezoelectric nanogenerators. Acta Mater. 2018;161:237-45.
  • 2. Sahmani S, Khandan A, Saber-Samandari S, Aghdam MM. Vibrations of beam-type implants made of 3D printed bredigite-magnetite bio-nanocomposite scaffolds under axial compression: Application, communication and simulation. Ceram Int. 2018;44:11282-91.
  • 3. Sahmani S, Shahali M, Khandan A, Saber-Samandari S, Aghdam MM. Analytical and experimental analyses for mechanical and biological characteristics of novel nanoclay bio-nanocomposite scaffolds fabricated via space holder technique. Appl Clay Sci. 2018;165:112-23.
  • 4. Ali F, Raza W, Li X, Gul H, Kim K-H. Piezoelectric energy harvesters for biomedical applications. Nano Energy. 2019;57:879-902.
  • 5. Sahmani S, Khandan A, Esmaeili S, Saber-Samandari S, et al. Calcium phosphate-PLA scaffolds fabricated by fused deposition modeling technique for bone tissue applications: fabrication, characterization and simulation. Ceram Int. 2020;46:2447-56.
  • 6. Lemaire E, Thuau D, Souetre M, Zgainski L, Royet A, Atli A. Revisiting two piezoelectric salts within an eco-design paradigm for sensors and actuators applications. Sens Actuators, A. 2021;318: 112483.
  • 7. Liu Y, Qin Z, Chu F. Nonlinear dynamic responses of sandwich functionally graded porous cylindrical shells embedded in elastic media under 1:1 internal resonance. Appl Math Mech. 2021;42:805-18.
  • 8. Liu Y, Qin Z, Chu F. Nonlinear forced vibrations of FGM sandwich cylindrical shells with porosities on an elastic substrate. Nonlinear Dyn. 2021;104:1007-21.
  • 9. Liu Y, Qin Z, Chu F. Nonlinear forced vibrations of functionally graded piezoelectric cylindrical shells under electric-thermomechanical loads. Int J Mech Sci. 2021;201: 106474.
  • 10. Safaei B, Onyibo EC, Hurdoganoglu D. Effect of static and harmonic loading on the honeycomb sandwich beam by using finite element method. Facta Universitatis Series Mechanical Engineering (2022). https://doi.org/10.22190/FUME220201009S.
  • 11. Zhang L, Zhang F, Qin Z, Han Q, Wang T, Chu F. Piezoelectric energy harvester for rolling bearings with capability of self-powered condition monitoring. Energy. 2022;238: 121770.
  • 12. Sahmani S, Ansari R. Nonlocal beam models for buckling of nanobeams using state-space method regarding different boundary conditions. J Mech Sci Technol. 2011;25:2365-75.
  • 13. Ke L-L, Wang Y-S, Wang Z-D. Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Compos Struct. 2012;94:2038-247.
  • 14. Zhang C, Chen W, Zhang Ch. Two-dimensional theory of piezoelectric plates considering surface effect. Eur J Mech A/Solids. 2013;41:50-7.
  • 15. Yang WD, Zhang W, Wang X, Lu G. Nonlinear delamination buckling and expansion of functionally graded laminated piezoelectric composite shells. Int J Solids Struct. 2014;51:894-903.
  • 16. Zhang LL, Liu JX, Fang XQ, Nie GQ. Size-dependent dispersion characteristics in piezoelectric nanoplates with surface effects. Physica E. 2014;57:169-74.
  • 17. Li YS, Pan E. Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory. Int J Eng Sci. 2015;97:40-59.
  • 18. Sahmani S, Aghdam MM, Akbarzadeh AH. Size-dependent buckling and postbuckling behavior of piezoelectric cylindrical nanoshells subjected to compression and electrical load. Mater Des. 2016;105:341-51.
  • 19. Liu C, Ke L-L, Yang J, Kitipornchai S, Wang Y-S. Buckling and post-buckling analyses of size-dependent piezoelectric nanoplates. Theor Appl Mech Lett. 2016;6:253-67.
  • 20. Mohammadimehr M, Rousta Navi B, Ghorbanpour Arani A. Modified strain gradient Reddy rectangular plate model for biaxial buckling and bending analysis of double-coupled piezoelectric polymeric nanocomposite reinforced by FG-SWNT. Composites B Eng. 2016;87:132-48.
  • 21. Sahmani S, Aghdam MM. Temperature-dependent nonlocal instability of hybrid FGM exponential shear deformable nanoshells including imperfection sensitivity. Int J Mech Sci. 2017;122:129-42.
  • 22. Farajpour A, Rastgoo A, Mohammadi M. Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment. Physica B. 2017;509:100-14.
  • 23. Liu JC, Zhang YQ, Fan LF. Nonlocal vibration and biaxial buckling of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between. Phys Lett A. 2017;381:1228-35.
  • 24. Keleshteri MM, Asadi H, Wang Q. On the snap-through instability of post-buckled FG-CNTRC rectangular plates with integrated piezoelectric layers. Comput Methods Appl Mech Eng. 2018;331:53-71.
  • 25. Shen J, Wang H, Zheng S. Size-dependent pull-in analysis of a composite laminated micro-beam actuated by electrostatic and piezoelectric forces: generalized differential quadrature method. Int J Mech Sci. 2018;135:353-61.
  • 26. Fang X-Q, Zhu C-S, Liu J-X, Liu X-L. Surface energy effect on free vibration of nano-sized piezoelectric double-shell structure. Physica B. 2018;529:41-56.
  • 27. Safarpour H, Ghanbari B, Ghadiri M. Buckling and free vibration analysis of high speed rotating carbon nanotube reinforced cylindrical piezoelectric shell. Appl Math Model. 2019;65:428-42.
  • 28. Kim J, Zur KK, Reddy JN. Bending, free vibration, and buckling of modified couples stress-based functionally graded porous microplates. Compos Struct. 2019;209:879-88.
  • 29. Sahmani S, Safaei B. Influence of homogenization models on size-dependent nonlinear bending and postbuckling of bi-directional functionally graded micro/nano-beams. Appl Math Model. 2020;82:336-58.
  • 30. Mao JJ, Lu HM, Zhang W, Lai SK. Vibrations of graphene nano-platelet reinforced functionally gradient piezoelectric composite microplate based on nonlocal theory. Compos Struct. 2020;236: 111813.
  • 31. Thai CH, Ferreira AJM, Tran TD, Phung-Van P. A size-dependent quasi-3D isogeometric model for functionally graded graphene platelet-reinforced composite microplates based on the modified couple stress theory. Compos Struct. 2020;234: 111695.
  • 32. Yuan Y, Zhao K, Zhao Y, Sahmani S, Safaei B. Couple stress-based nonlinear buckling analysis of hydrostatic pressurized functionally graded composite conical microshells. Mech Mater. 2020;148: 103507.
  • 33. Joshan YS, Santapuri S, Srinivasa A. Finite element modeling and analysis of low symmetry piezoelectric shells for design of shear sensors. Int J Mech Sci. 2021;210: 106726.
  • 34. Tang H, Dai H-L. Dynamic instability zone analysis of laminated piezoelectric cylindrical shell with delamination under hygrothermal effects. Appl Math Model. 2021;99:27-40.
  • 35. Fan F, Xu Y, Sahmani S, Safaei B. Modified couple stress-based geometrically nonlinear oscillations of porous functionally graded microplates using NURBS-based isogeometric approach. Comput Methods Appl Mech Eng. 2020;372: 113400.
  • 36. Fan F, Safaei B, Sahmani S. Buckling and postbuckling response of nonlocal strain gradient porous functionally graded micro/nanoplates via NURBS-based isogeometric analysis. Thin-Walled Struct. 2021;159: 107231.
  • 37. Yin Z, Zhang J, Yang F, Ye W, Liu J, Lin G. An efficient scaled boundary finite element approach in bending and bucking analysis of functionally graded piezoelectric plates. Eng Anal Boundary Elem. 2021;132:168-81.
  • 38. Yang Y, Chen B, Lin W, Li Y, Dong Y. Vibration and symmetric thermal buckling of asymmetric annular sandwich plates with piezoelectric/GPLRC layers rested on foundation. Aerosp Sci Technol. 2021;110: 106495.
  • 39. Al-Furjan MSH, Dehini R, Khorami M, Habibi M, Jung DW. On the dynamics of the ultra-fast rotating cantilever orthotropic piezoelectric nanodisk based on nonlocal strain gradient theory. Compos Struct. 2021;255: 112990.
  • 40. Tang P, Sun Y, Sahmani S, Madyira DM. Isogeometric small-scale-dependent nonlinear oscillations of quasi-3D FG inhomogeneous arbitrary-shaped microplates with variable thickness. J Braz Soc Mech Sci Eng. 2021;43:343.
  • 41. Yang Z, Lu H, Sahmani S, Safaei B. Isogeometric couple stress continuum-based linear and nonlinear flexural responses of functionally graded composite microplates with variable thickness. Arch Civil Mech Eng. 2021;21:114.
  • 42. Wang P, Yuan P, Sahmani S, Safaei B. Surface stress size dependency in nonlinear free oscillations of FGM quasi-3D nanoplates having arbitrary shapes with variable thickness using IGA. Thin-Walled Struct. 2021;166: 108101.
  • 43. Nguyen NV, Lee J. On the static and dynamic responses of smart piezoelectric functionally graded graphene platelet-reinforced microplates. Int J Mech Sci. 2021;197: 106310.
  • 44. Ghobadi A, Golestanian H, Tadi Beni Y, Zur KK. On the size-dependent nonlinear thermo-electro-mechanical free vibration analysis of functionally graded flexoelectric nano-plate. Commun Nonlinear Sci Numerical Simul. 2021;95:105585.
  • 45. Lu H, Zhou J, Sahmani S, Safaei B. Nonlinear stability of axially compressed couple stress-based composite micropanels reinforced with random checkerboard nanofillers. Phys Scr. 2021;96: 125703.
  • 46. Sun JH, Zhou J, Sahmani S, Safaei B. Microstructural size dependency in nonlinear lateral stability of random reinforced microshells via meshfree-based applied mathematical modeling. Int J Struct Stab Dyn. 2021;21:2150164.
  • 47. Zhang Y, Sahmani S, Safaei B. Meshfree-based applied mathematical modeling for nonlinear stability analysis of couple stress-based lateral pressurized randomly reinforced microshells. Eng Comput. 2021. https://doi.org/10.1007/s00366-021-01472-x.
  • 48. Yu X, Maalla A, Moradi Z. Electroelastic high-order computational continuum strategy for critical voltage and frequency of piezoelectric NEMS via modified multi-physical couple stress theory. Mech Syst Signal Process. 2022;165: 108373.
  • 49. Bidzard A, Malekzadeh P, Mohebpour SR. A size-dependent nonlinear finite element free vibration analysis of multilayer FG-GPLRC toroidal micropanels in thermal environment. Compos Struct. 2022;279: 114783.
  • 50. Wang J, Ma B, Gao J, Liu H, Safaei B, Sahmani S. Nonlinear stability characteristics of porous graded composite microplates including various microstructural-dependent strain gradient tensors. Int J Appl Mech. 2022;14:2150129.
  • 51. Farrokhian A, Salmani-Tehrani M. Vibration and damping analysis of smart sandwich nanotubes using surface-visco-piezo-elasticity theory for various boundary conditions. Eng Anal Boundary Elem. 2022;135:337-58.
  • 52. Reddy JN. Theory and analysis of elastic plates and shells. CRC Press; 2006.
  • 53. Wang Q. On buckling of column structures with a pair of piezoelectric layers. Eng Struct. 2002;24:199-205.
  • 54. Eringen AC. Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci. 1972;10:425-35.
  • 55. Yang F, Chong ACM, Lam DCC, Tong P. Couple stress based strain gradient theory for elasticity. Int J Solids Struct. 2002;39:2731-43.
  • 56. Liu H, Safaei B, Sahmani S. Combined axial and lateral stability behavior of random checkerboard reinforced cylindrical microshells via a couple stress-based moving Kriging meshfree model. Arch Civil Mech Eng. 2022;22:15.
  • 57. Gu L. Moving kriging interpolation and element-free Galerkin method. Int J Numer Meth Eng. 2003;56:1-11.
  • 58. Thai CH, Do VNV, Nguyen-Xuan H. An improved moving Kriging-based meshfree method for static, dynamic and buckling analyses of functionally graded isotropic and sandwich plates. Eng Anal Boundary Elem. 2016;64:122-36.
  • 59. Thai CH, Ferreira AJM, Nguyen-Xuan H. Naturally stabilized nodal integration meshfree formulations for analysis of laminated composite and sandwich plates. Compos Struct. 2017;178:260-76.
  • 60. Vel SS, Mewer RC, Batra RC. Analytical solution for the cylindrical bending vibration of piezoelectric composite plates. Int J Solids Struct. 2004;41:1625-43.
  • 61. Ramirez F, Heyliger PR, Pan E. Free vibration response of two-dimensional magneto-electro-elastic laminated plates. J Sound Vib. 2006;292:626-44.
  • 62. Yang J. Special topics in the theory of piezoelectricity. New York: Springer; 2009.
  • 63. Bodaghi M, Shakeri M. An analytical approach for free vibration and transient response of functionally graded piezoelectric cylindrical panels subjected to impulsive loads. Compos Struct. 2012;94:1721-35.
  • 64. Shen H-S, Xiang Y, Fan Y. Postbuckling of functionally graded graphene-reinforced composite laminated cylindrical panels under axial compression in thermal environments. Int J Mech Sci. 2018;138:398-409.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f586df00-5af2-4a64-b822-14b384fc86c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.