PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of the volume of cavitation cloud in a cavitation tunnel using multiphase computational fluid dynamics simulations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work is devoted to a computational investigation of the position and volume of the cavitation cloud in a cavitation tunnel. The position of the cavitation cloud and its volume in the cavitation tunnel, determined by numerical analysis with respect to the inlet velocity, allows for the determination of the lower or higher intensity of cavitation erosion within the tunnel of the sample material. A numerical analysis is carried out on a model of a typical cavitation tunnel used to investigate the resistance of structural materials to cavitation erosion. The tunnel under study consists of barricade (upper) and counter-barricade (lower) systems. The numerical analysis is carried out with the following five different values of the velocity in the tunnel inlet: 6 m/s, 9 m/s, 12 m/s, 15 m/s, and 18 m/s in the commercial CFD software – Ansys Fluent 2019 R3. The Schnerr and Sauer cavitation model and shear stress transport (SST) viscous model k-omega are used. The paper analyzes the distribution of velocity, pressure, and volume of the cavitation cloud. On the basis of the performed numerical analyses, the optimal velocity at the inlet to the tunnel of 15 m/s is determined, for which the volume of the cavitation cloud is the largest and the phenomenon of cavitation is the most intense. The determination of the position and maximum volume of the cavitation cloud relative to the inlet velocity to the tunnel will, in future, allow us to shorten the resistance tests for cavitation erosion of different materials under real fluid flow conditions.
Rocznik
Strony
48--56
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
  • Maritime University of Szczecin, Department of Machine Construction and Materials 2-4 Willowa St., 71-650 Szczecin, Poland
  • Maritime University of Szczecin, Department of Machine Construction and Materials 2-4 Willowa St., 71-650 Szczecin, Poland
Bibliografia
  • 1. Ansys (2021) Ansys Fluent User’s Guide Release 2021 R2. Ansys Inc., Canonsburg, USA.
  • 2. Biesheuvel, A. & Van Wijngaarden, L. (1984) Twophase flow equations for a dilute dispersion of gas bubbles in liquid. Journal of Fluid Mechanics 148, pp. 301–318, doi: 10.1017/S0022112084002366.
  • 3. Brennen, C.E. (1995) Cavitation and bubble dynamics. Oxford, New York: Oxford University Press.
  • 4. Brusiani, F., Falfari, S. & Bianchi, G.M. (2015) Definition of a CFD multiphase simulation strategy to allow a first evaluation of the cavitation erosion risk inside high-pressure injector. Energy Procedia 81, pp. 755–764, doi 10.1016/j. egypro.2015.12.081.
  • 5. de Crecy, F. (1986) Modeling of stratified two-phase flow in pipes, pumps and other devices. International Journal of Multiphase Flow 12(3), pp. 307–323, doi: 10.1016/0301- 9322(86)90010-8.
  • 6. Dular, M. & Coutier-Delgosha, O. (2009) Numerical modelling of cavitation erosion. International Journal for Numerical Methods in Fluids 61(12), pp. 1388–1410, doi: 10.1002/fld.2003.
  • 7. Fedotkin, I. & Yochno, O. (2001) Some problems of development of cavitation technologies for industry applications. CAV2001.
  • 8. Franc, J.-P. & Michel, J.-M. (2004) Fundamentals of Cavitation. Springer Dordrecht, doi: 10.1007/1-4020-2233-6.
  • 9. Gibson, D.C. & Blacke, J.R. (1982) The growth and collapse of bubbles near deformable surface. Applied Scientific Research 38, pp. 215–224.
  • 10. Grist, E. (1998) Cavitation And The Centrifugal Pump: A Guide For Pump Users. CRC Press.
  • 11. Hickling, R. & Plesset, M.S. (1963) The collapse of a spherical cavity in a compressible liquid. California Institute of Technology.
  • 12. Jasionowski, R. & Kostrzewa, W. (2018) Optimization of geometry of cavitational tunnel using CFD method. In:Awrejcewicz, J. (eds) Dynamical Systems in Applications. DSTA 2017. Springer Proceedings in Mathematics & Statistics 249, Springer, Cham, pp. 181–192, doi: 10.1007/978-3- 319-96601-4_17.
  • 13. Jasionowski, R., Polkowski, W. & Zasada, D. (2016) Destruction mechanism of ZnAl4 as cast alloy subjected to cavitational erosion using different laboratory stands. Archives of Foundry Engineering, 16(1), pp. 19–24, doi: 10.1515/ afe-2015-0096.
  • 14. Jasionowski, R., Zasada, D. & Polkowski, W. (2016) The evaluation of the cavitational damage in MgAl2Si alloy using various laboratory stands. Solid State Phenomena 252, pp. 61–70, doi: 10.4028/www.scientific.net/SSP.252.61.
  • 15. Kolev, N.I. (2007) Multiphase Flow Dynamics 2. Thermal and Mechanical Interactions. 3rd Edition. Berlin, Heidelberg: Springer-Verlag.
  • 16. Kolev, N.I. (2015) Multiphase Flow Dynamics 1. Fundamentals. Springer, Cham, doi: 10.1007/978-3-319-15296-7.
  • 17. Kozubková, M., Rautová, J. & Bojko, M. (2012) Mathematical model of cavitation and modelling of fluid flow in cone. Procedia Engineering 39, pp. 9–18, doi: 10.1016/j. proeng.2012.07.002.
  • 18. Kumar, D. & Bhingole, P.P. (2015) CFD based analysis of combined effect of cavitation and silt erosion on Kaplan turbine. Materials Today: Proceedings 2(4–5), pp. 2314– 2322, doi: 10.1016/j.matpr.2015.07.276.
  • 19. Parsi, M., Kara, M., Agrawal, M., Kesana, N., Jatale, A., Sharma, P. & Shirazi, S. (2017) CFD simulation of sand particle erosion under multiphase flow conditions. Wear 376–377, Part B, pp. 1176–1184, doi: 10.1016/j. wear.2016.12.021.
  • 20. Patella, R.F., Archer, A. & Flageul, C. (2012) Numerical and experimental investigations on cavitation erosion. IOP Conference Series: Earth and Environmental Science 15, 022013, doi: 10.1088/1755-1315/15/2/022013.
  • 21. Plesset, M.S. (1949) The dynamics of cavitation bubbles. ASME Journal Applied Mechanics 16(3), pp. 277–282, doi: 10.1115/1.4009975.
  • 22. Plesset, M.S. & Chapman, R.B. (1971) Collapse of an initially spherical vapor cavity in the neighborhood of solid boundary. Journal of Fluid Mechanics 47(2), pp. 283–290, doi: 10.1017/S0022112071001058.
  • 23. Plesset, M.S. & Prosperetti, A. (1977) Bubble dynamics and cavitation. Annual Review of Fluid Mechanics 9, pp. 145–185, doi: 10.1146/annurev.fl.09.010177.001045.
  • 24. Riznic, J.R. & Ishii, M. (1989) Bubble number density and vapor generation in flushing flow. International Journal of Heat and Mass Transfer 32(10), pp. 1821–1833, doi:10.1016/0017-9310(89)90154-3.
  • 25. Schnerr, G.H. & Sauer, J. (2001) Physical and Numerical Modeling of Unsteady Cavitation Dynamics. ICMF-2001. 4th International Conference on Multiphase Flow, New Orleans, USA, May 27 – June 1, 2001.
  • 26. Singhal, A.K., Athavale, M.M., Li, H.Y. & Jiang, Y. (2002) Mathematical Basis and Validation of the Full Cavitation Model. Journal of Fluids Engineering 124(3), pp. 617–624, doi: 10.1115/1.1486223.
  • 27. Szala, M. & Łukasik, D. (2016) Cavitation wear of pump impellers. Journal of Technology and Exploitation in Mechanical Engineering 2(1), pp. 40–44, doi: 10.35784/ jteme.337.
  • 28. Zwart, J., Gerber, A.G. & Belamri, T. (2004) Two-Phase Flow Model for Predicting Cavitation Dynamics. ICMF 2004. International Conference on Multiphase Flow, Yokohama, Japan, May 30 – June 3, 2004, Paper No. 152.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f58153cb-38e3-4c73-8f6a-e5ad73a94c9d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.