PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Gold Nanoparticles on the Photocatalytic Action of Titanium Dioxide in Physical-Chemical Parameters of Greywater

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the work was to evaluate the influence of gold nanoparticles, obtained by laser ablation, on the photocatalytic action of titanium dioxide in the improvement of the physical-chemical parameters of domestic greywater, with visualization by means of a PLC. The YAG laser equipment was used for the production of spherical gold nanoparticles, whereas the Raman spectroscope allowed characterizing the different particles contained in aqueous solutions. The solar photoreactor programmable and viewable from PLC with connection to sensors allowed determining the variations of the pH, EC, DO and FCL parameters. The work consisted of a control group (greywater + titanium dioxide) and an experimental group (greywater + titanium dioxide + gold nanoparticles). The titanium dioxide doses for both groups were 0.5 mg/L and the gold nanoparticles were 0.20 ml per liter of greywater only for the control group. The experiments were carried out on sunny days with the exposure periods of 30 and 60 minutes around solar noon with an average UV index of 13.35. Once the experiments were carried out, it was determined that the pH improved by 5.30%, EC by 3.03%, DO by 29.3% and FCL by 43.71%, so that the gold nanoparticles dissolved in the aqueous solution of titanium dioxide with greywater positively influenced the improvement of the photocatalytic action of titanium dioxide in the physical-chemical parameters of greywater.
Rocznik
Strony
182--192
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Universidad Nacional de Huancavelica, Facultad de Ingeniería Electrónica-Sistemas, Jr. La Mar N° 755, Pampas-Tayacaja, Huancavelica, Perú
  • Universidad Nacional de Huancavelica, Facultad de Ingeniería Electrónica-Sistemas, Jr. La Mar N° 755, Pampas-Tayacaja, Huancavelica, Perú
  • Universidad Nacional de Huancavelica, Facultad de Ingeniería Electrónica-Sistemas, Jr. La Mar N° 755, Pampas-Tayacaja, Huancavelica, Perú
Bibliografia
  • 1. Abdel-Maksoud, Y.K., Imam, E., & Ramadan, A.R. (2018). TiO2 water-bell photoreactor for wastewater treatment. Solar Energy, 170, 323–335.
  • 2. Almomani, F., Bhosale, R., Kumar, A., & Khraisheh, M. (2018). Potential use of solar photocatalytic oxidation in removing emerging pharmaceuticals from wastewater: A pilot plant study. Solar Energy. https://doi.org/10.1016/J.SOLENER.2018.07.041
  • 3. Amendola, V., & Meneghetti, M. (2009). Size evaluation of gold nanoparticles by UV− vis spectroscopy. The Journal of Physical Chemistry C, 113(11), 4277–4285.
  • 4. AVANTES. (2019). Raman Spectroscopy Applications. https://avantesusa.com/raman-spectroscopy-applications/
  • 5. BOPLA. (2019). Grado de protección IP 68. https://www.bopla.de/es/datos-tecnicos/informacionestecnicas/grados-de-proteccion/ip-68.html
  • 6. Boyd, C.E. (2020). Water quality. U. Auburn (Ed.); 3.a edition. Springer. https://doi.org/10.1007/978–3-030–23335–8
  • 7. Çalışkan, Y., Öztürk, H., Bektaş, N., & Yatmaz, H. C. (2021). UVA enhanced electrocoagulation comparing Al and Fe electrodes for reclamation of greywater. Separation Science and Technology, 56(9), 1622–1632.
  • 8. Carbajal-Morán, H., Zárate Quiñones, R.H., & Márquez Camarena, J.F. (2021). Gray Water Recovery System Model by Solar Photocatalysis with TiO2 Nanoparticles for Crop Irrigation. Journal of Ecological Engineering, 22(4), 78–87. https://doi.org/10.12911/22998993/134034
  • 9. Cerreta, G., Roccamante, M.A., Oller, I., Malato, S., & Rizzo, L. (2019). Contaminants of emerging concern removal from real wastewater by UV/ free chlorine process: A comparison with solar/free chlorine and UV/H2O2 at pilot scale. Chemosphere, 236, 124354.
  • 10. Chen, X., Yao, J., Xia, B., Gan, J., Gao, N., & Zhang, Z. (2020). Influence of pH and DO on the ofloxacin degradation in water by UVA-LED/TiO2 nanotube arrays photocatalytic fuel cell: mechanism, ROSs contribution and power generation. Journal of hazardous materials, 383, 121220.
  • 11. Das, R.S., & Agrawal, Y.K. (2011). Raman spectroscopy: Recent advancements, techniques and applications. Vibrational Spectroscopy, 57(2), 163–176. https://doi.org/https://doi.org/10.1016/j.vibspec.2011.08.003
  • 12. de Oliveira Schwaickhardt, R., Machado, Ê.L., & Lutterbeck, C.A. (2017). Combined use of VUV and UVC photoreactors for the treatment of hospital laundry wastewaters: Reduction of load parameters, detoxification and life cycle assessment of different configurations. Science of the Total Environment, 590, 233–241.
  • 13. ElectroPeak. (2016). Interfacing UVM30A UV Sensor Module with Arduino – Electropeak. https://electropeak.com/learn/interfacing-uvm30a-uvlight-sensor-module-with-arduino/
  • 14. EMRC. (2011). Reuse of Greywater in Western Australia. Discussion Paper Australia.
  • 15. Gewering, T., Januliene, D., Ries, A.B., & Moeller, A. (2018). Know your detergents: A case study on detergent background in negative stain electron microscopy. Journal of Structural Biology, 203(3), 242–246.
  • 16. Hou, J.G., Yang, J.L., Luo, Y., Aizpurua, J., Liao, Y., Zhang, L., Chen, L.G., Zhang, C., & Jiang, S. (2013). Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 498(7452), 82–86. https://doi.org/10.1038/nature12151
  • 17. Ilie, A. G., Scarisoareanu, M., Morjan, I., Dutu, E., Badiceanu, M., & Mihailescu, I. (2017). Principal component analysis of Raman spectra for TiO2 nanoparticle characterization. Applied Surface Science, 417, 93–103. https://doi.org/https://doi.org/10.1016/j.apsusc.2017.01.193
  • 18. Liang, Y., Zhu, H., Bañuelos, G., Yan, B., Shutes, B., Cheng, X., & Chen, X. (2017). Removal of nutrients in saline wastewater using constructed wetlands: Plant species, influent loads and salinity levels as influencing factors. Chemosphere, 187, 52–61.
  • 19. Lin, L., Wang, H., Jiang, W., Mkaouar, A.R., & Xu, P. (2017). Comparison study on photocatalytic oxidation of pharmaceuticals by TiO2-Fe and TiO2-reduced graphene oxide nanocomposites immobilized on optical fibers. Journal of hazardous materials, 333, 162–168.
  • 20. Mansfeldova, V., Zlamalova, M., Tarabkova, H., Janda, P., Vorokhta, M., Piliai, L., & Kavan, L. (2021). Work Function of TiO2 (Anatase, Rutile, and Brookite) Single Crystals: Effects of the Environment. The Journal of Physical Chemistry C, 125(3), 1902–1912.
  • 21. Matallana-Surget, S., & Wattiez, R. (2013). Impact of solar radiation on gene expression in bacteria. Proteomes, 1(2), 70–86.
  • 22. Matricardi, C., Hanske, C., Garcia-Pomar, J.L., Langer, J., Mihi, A., & Liz-Marzan, L.M. (2018). Gold nanoparticle plasmonic superlattices as surface-enhanced Raman spectroscopy substrates. ACS nano, 12(8), 8531–8539.
  • 23. Mohamed, R.M., Al-Gheethi, A.A., Noramira, J., Chan, C.M., Hashim, M.K.A., & Sabariah, M. (2018). Effect of detergents from laundry greywater on soil properties: a preliminary study. Applied water science, 8(1), 1–7.
  • 24. Plantard, G., Dezani, C., Ribeiro, E., Reoyo-Prats, B., & Goetz, V. (2021). Modelling heterogeneous photocatalytic oxidation using suspended TiO2 in a photoreactor working in continuous mode: Application to dynamic irradiation conditions simulating typical days in July and February. Canadian Journal of Chemical Engineering, 99(1), 142–152. https://doi.org/10.1002/cjce.23870
  • 25. Raman, C.V, & Krishnan, K.S. (1928). A New Type of Secondary Radiation. Nature, 121(3048), 501–502. https://doi.org/10.1038/121501c0
  • 26. REMOND. (2019). Water quality analysis. https://remond.en.alibaba.com/es_ES/?spm=a2700.icbuShop.88.7.20674367QPvkOI
  • 27. Rueda-Marquez, J.J., Levchuk, I., Ibañez, P.F., & Sillanpää, M. (2020). A critical review on application of photocatalysis for toxicity reduction of real wastewaters. Journal of Cleaner Production, 258, 120694.
  • 28. Sun, J., Gong, L., Wang, W., Gong, Z., Wang, D., & Fan, M. (2020). Surface-enhanced Raman spectroscopy for on-site analysis: A review of recent developments. Luminescence, 35(6), 808–820.
  • 29. Sun, Q., Wu, S., Yin, R., Bai, X., Bhunia, A.K., Liu, C., Zheng, Y., Wang, F., & Blatchley III, E.R. (2021). Effects of fulvic acid size on microcystinLR photodegradation and detoxification in the chlorine/UV process. Water Research, 193, 116893.
  • 30. Tuschel, D. (2019). Raman spectroscopy and polymorphism. Spectroscopy, 34(3), 10–21.
  • 31. Yamamoto, A.L.C., Corrêa, M.P., & Ccoyllo, O.R. S. (2018). Validation and analysis of UV radiation time series collected in different peruvian sites.
  • 32. Zhang, Q., Lu, X., Tang, P., Zhang, D., Tian, J., & Zhong, L. (2016). Gold nanoparticle (AuNP)-based surface-enhanced Raman scattering (SERS) probe of leukemic lymphocytes. Plasmonics, 11(5), 1361–1368.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f580ee79-5e0b-4a77-b47e-b81c95ee5390
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.