PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Changes in Distortion Product Otoacoustic Emission Caused by Contralateral Broadband Noise

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main purpose of this investigation was to measure the effect of contralateral acoustic stimulation (CAS) on distortion product otoacoustic emission (DPOAE) in twenty human ears, for a ratio of primary tones f2/f1 = 1.22 and a wide frequency range of f2 (1.4–9 kHz), for two intensity levels of primary tones (L1 = 60 dB SPL; L2 = 50 dB SPL and L1 = 70 dB SPL; L2 = 60 dB SPL) and two intensity levels of CAS (50 and 60 dB SPL). It was found that in the presence of CAS, in the majority of cases the DPOAE level decreased (suppression), but it might also increase (enhancement) or remain unchanged depending on the frequency. The mean suppression level of the component of the frequency fDP = 2f1 − f2 might be approximated by a linearly decreasing function of the f2 frequency of primary tones. The slope of this function was negative and increased with an increase of the contralateral stimulation level. The higher was the contralateral noise level the greater was the suppression. For the fDP level below about 15 dB SPL, suppression was observed in a substantial number of measurement cases (in about 85% of all measured cases on average). When the fDP level was higher than 15 dB SPL, only suppression (not enhancement) was observed.
Rocznik
Strony
125--138
Opis fizyczny
Bibliogr. 37 poz., wykr.
Twórcy
autor
  • Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University Umultowska 85, 61-614 Poznań, Poland
autor
  • Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University Umultowska 85, 61-614 Poznań, Poland
Bibliografia
  • 1. Abdala C., Mishra S.K., Williams T.L. (2009), Considering distortion product otoacoustic emission fine structure in measurements of the medial olivocochlear reflex, J. Acoust. Soc. Am., 125, 1584-1594.
  • 2. Backus B.C., Guinan J.J. Jr. (2006), Time-course of the human medial olivocochlear reflex, J. Acoust. Soc. Am., 119, 2889-2904.
  • 3. Berlin C.I., Hood L.J., Wen H., Szabo P., Cecola R.P., Rigby P., Jackson D.F. (1993), Contralateral suppression of non-linear click-evoked otoacoustic emissions, Hear. Res., 71, 1-11.
  • 4. Chery-Croze S., Moulin A., Collet L. (1993), Effect of contralateral sound stimulation on. the distortion product 2/i — /2 in humans: evidence of a frequency specificity, Hear. Res., 68, 53-58.
  • 5. Collet L., Kemp D.T., Veuillet E., Duclaux R., Moulin A., MORGON A. (1990), Effect of contralateral auditory stimuli on. active cochlear micro-mechanical properties in h.um.an subjects, Hear. Res., 43, 251-261.
  • 6. Collet L., Veuillet E., Moulin A., Morlet T., Giraud A.L., Micheyl C., Chery-Croze S. (1994), Contralateral auditory stimulation and otoacoustic emissions: a review of basic data in humans, Br. J. Audiol., 28, 213-218.
  • 7. Deeter R., Abel R., Calandruccio L., Dhar S. (2009), Contralateral acoustic stimulation alters the magnitude and phase of distortion product otoacoustic emissions, J. Acoust. Soc. Am., 126, 2413-2424.
  • 8. Francis N.A., Guinan J.J. Jr. (2010), Acoustic stimulation of human m.edial olivocochlear efferents reduces stimulus-frequency and click-evoked otoacoustic emission delays: Implications for cochlear filter bandwidths, Hear. Res., 267, 36-45.
  • 9. Gelfand S.A., Piper N. (1984), Acoustic reflex thresholds: variability and distribution effects, Ear Hear, 5, 228-234.
  • 10. Giraud A.L., Collet L., Chery-Croze S. (1997), Suppression of otoacoustic emission is unchanged after several minutes of contralateral acoustic stimulation, Hear. Res., 109, 78-82.
  • 11. Giraud A.L., Collet L., Chery-Croze S., Mag- NAN J., CHAYS A. (1995), Evidence of a medial olivocochlear involvement in contralateral suppression of otoacoustic emissions in humans, Brain Res, 705, 15- 23.
  • 12. Guinan J.J. (ed) (1996), The physiology of olivocochlear efferents, (Springer-Verlag, New York).
  • 13. Guinan J.J. Jr. (2006), Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans, Ear Hear, 27, 589-607.
  • 14. Guinan J.J. Jr., Backus B.C., Lilaonitkul W., Aharonson V. (2003), Medial olivocochlear efferent reflex in humans: otoacoustic emission (OAE) m.easurem.en.t issues and the advantages of stimulus frequency OAEs, J. Assoc. Res. Otolaryngol., 4, 521-540.
  • 15. He N.J., Schmiedt R.A. (1993), Fine structure of the 2f1-f2— /2 acoustic distortion product: changes with, primary level, J. Acoust. Soc. Am., 94, 2659-2669.
  • 16. Henin S., Thompson S., Abdelrazeq S., Long G.R. (2011), Changes in amplitude and phase of distortion- product otoacoustic emission fine-struct-ure and separated components during efferent activation, J. Acoust. Soc. Am., 129, 2068-2079.
  • 17. Hood L.J. (ed) (2002), Suppression of otoacoustic emissions in normal individuals and in patients with, auditory disorders, (Stuttgart, New York).
  • 18. James A.L., Harrison R.V., Pienkowski M., Da- JANI H.R., Mount R.J. (2005), Dynamics of real ti.m.e DPOAE contralateral suppression in chinchillas and humans, Int. J. Audiol., 44, 118-129.
  • 19. James A.L., Mount R.J., Harrison R.V. (2002), Contralateral suppression of DPOAE measured in real time, Clin. Otolaryngol. Allied. Sci., 27, 106-112.
  • 20. Knight R.D., Kemp D.T. (2001), Wave and place fixed DPOAE m.aps of the h.um.an ear, J. Acoust. Soc. Am., 109, 1513-1525.
  • 21. Konrad-Martin D., Neely S.T., Keefe D.H., Dorn P.A., Cyr E., Gorga M.P. (2002), Sources of DPOAEs revealed by suppression experiments, inverse fast Fourier transforms, and SFOAEs in impaired ears, J. Acoust. Soc. Am., Ill, 1800-1809.
  • 22. Llberman M.C. (1988), Response properties of cochlear efferent neurons: monaural vs. binaural stimulation and the effects of noise, J. Neurophysiol, 60, 1779-1798.
  • 23. Lilaonitkul W., Guinan J.J. Jr. (2009), Reflex control of the h.um.an inner ear: a half-octave offset in medial efferent feedback that is consistent with. an. efferent role in the control of masking, J. Neurophysiol, 101, 1394-1406.
  • 24. Lisowska G., Smurzynski J., Morawski K., Na- MYSLOWSKI G., Probst R. (2002), Influence of contralateral stimulation by two-tone complexes, narrowband and broad-band noise signals on. the 2f1-f2 distortion product otoacoustic emission levels in humans, Acta Otolaryngol, 122, 613-619.
  • 25. Maison S., Micheyl C., Andeol G., Gallego S., Collet L. (2000), Activation of medial olivocochlear efferent system, in humans: influence of stimulus bandwidth, Hear. Res., 140, 111-125.
  • 26. Manley G.A., Taschenberger G., Oeckinghaus H. (1999), Influence of contralateral acoustic stimulation on distortion-product and spontaneous otoacoustic emissions in the barn owl, Hear. Res., 138, 1-12.
  • 27. Mauermann M., Uppenkamp S., van Hengel P.W., Kollmeier B. (1999), Evidence for the distortion product frequency place as a source of distortion product otoacoustic emission (DPOAE) fine structure in humans. I. Fine structure and higher-order DPOAE as a function of the frequency ratio f'2/fl, J. Acoust. Soc. Am., 106, 3473-3483.
  • 28. Moulin A., Collet L., Duclaux R. (1993), Contra la tern I auditory stimulation alters acoustic distortion products in humans, Hear. Res., 65, 193-210.
  • 29. Muller J., Janssen T., Heppelmann G., Wagner W. (2005), Evidence for a bipolar change in distortion product otoacoustic emissions during contralateral acoustic stimulation in humans, J. Acoust. Soc. Am., 118, 3747-3756.
  • 30. Ozimek E., Wlcher A. (2006), Otoacoustic emission (DPOAE) measured in the presence of contralateral stimulation, XXVIII International Congress of Audiology (Insbruck, Austria), p. 43.
  • 31. Probst R., Lonsbury-Martin B.L., Martin G.K. (1991), A review of otoacoustic emissions, J. Acoust. Soc. Am., 89, 2027-2067.
  • 32. Puel J.L., Rebillard G. (1990), Effect of contralateral sound stimulation on the distortion product 2f1-f2: evidence that the medial efferent system, is involved, J. Acoust. Soc. Am., 87, 1630-1635.
  • 33. Reuter K., Hammershoi D. (2006), Distortion product otoacoustic emission fine structure analysis of 50 normal-hearing humans, J. Acoust. Soc. Am., 120, 270-279.
  • 34. Sun X.M. (2008), Distortion product otoacoustic emission fine structure is responsible for variability of distortion product otoacoustic emission contralateral suppression, J. Acoust. Soc. Am., 123, 4310-4320.
  • 35. Williams D.M., Brown A.M. (1995), Contralateral and ipsilateral suppression of the 2f1-f2 distortion product in h.um.an subjects, J. Acoust. Soc. Am., 97, 1130-1140.
  • 36. Williams D.M., Brown A.M. (1997), The effect of contralateral broad-band noise on. acoustic distortion products from, the h.um.an ear, Hear. Res., 104, 127- 146.
  • 37. Zhang F., Boettcher F.A., Sun X.M. (2007), Contralateral suppression of distortion product otoacoustic emissions: effect of the primary frequency in Dpgrams, Int. J. Audiol., 46, 187-195.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f57c49bd-9bcf-47d6-91c2-1e146c73194e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.