PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of mechanical activation and heat treatment on surface development and oxide layer thickness of Ti6Al4V ELI alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper presents the results of mechanical activation of the surface on oxide layer thickness after heat treatment of TU6Al14V ELI alloy. Design/methodology/approach: Specimens were made from 5 mm diameter rod cut into semicircular slices. The samples were mechanically activated throughout mechanical treatment of the surface: one sandblasted with glass beads during 5 minutes and other ground with sandpaper grit 40, 180, 220 and 800 during 7.5 and 15 minutes. Findings: Then microstructure of specimens etched with Kroll solution was observed using an optical microscope and roughness parameters of the surface were measured. Research limitations/implications: Afterwards heat treatment (550°C, 5 hours) was conducted, then roughness parameters and thickness of the oxide layer were measured by means of a scanning microscope. Practical implications: The conducted research showed up that mechanical activation of the surface which cause an increase of surface development results in greater thickness of the oxide layer which is formed during heat treatment. Nevertheless, mechanical activation that results in a decrease of surface development, such as polishing, results in a decrease of oxide layer thickness. Originality/value: The results of the research can be used to obtain the desired thickness of the oxide layer in the production of the elements that require increased wear and corrosion resistance.
Rocznik
Strony
69--76
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland
  • Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland
Bibliografia
  • [1] J. Marciniak, Biomaterials, Silesian University of Technology Publishing House, Gliwice, 2002 (in Polish).
  • [2] Z. Szymański, Titanium and its alloys, in: A. Szymański (Ed.), Biomineralization and biomaterials, PWN, Warsaw, 1991 (in Polish).
  • [3] A. Bylica, J. Sieniawski, Titanium and its alloys, PWN, Warsaw, 1985 (in Polish).
  • [4] B. Ciszewski, W. Przetakiewicz, Titanium and titanium alloys, in: B. Ciszewski, W. Przetakiewicz (Eds.), Modern materials in technology, Bellona, Warsaw, 1993 (in Polish).
  • [5] J. Palan, L. Malecek, J. Hodek, M. Zemko, J. Dzugan, Possibilities of biocompatible material production using conform SPD technology, Archives of Materials Science and Engineering 88/1 (2017) 5-11, DOI: https://doi.org/10.5604/01.3001.0010.7746.
  • [6] J. Loch, H. Krawiec, A. Łukaszczyk, J. Augustyn-Pieniek, Corrosion resistance of titanium alloys in the artificial saliva solution, Journal of Achievements in Materials and Manufacturing Engineering 74/1 (2016) 29-36, DOI: https://doi.org/10.5604/17348412.1225755.
  • [7] E. Krasicka-Cydzik, Formation of thin anode layers on titanium and its alloys for implantology in phosphoric acid environment, University of Zielona Góra Pubishing House, Zielona Gora, 2003 (in Polish).
  • [8] J. Klimas, A. Łukaszewicz, M. Szota, M. Nabiałek, Modification of the structure and properties of the titanium alloy Ti6Al4V in biomedical applications, Archives of Metallurgy and Materials Science 60/3 (2015) 2013-2018, DOI: https://doi.org/10.1515/amm2015-0341.
  • [9] D. Siva Rama Krishna, Y.L. Brama, Y. Sun, Thick rutile layer on titanium for tribological applications, Tribology International 40/2 (2007) 329-334, DOI: https://doi.org/10.1016/j.triboint.2005.08.004.
  • [10] H. Dong, T. Bell, Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment, Wear 238/2 (2000) 131-137, DOI: https://doi.org/10.1016/S0043-1648(99)00359-2.
  • [11] J.W. Dewald, J. Electrochem. Soc 2, 2 (1953).
  • [12] T.P. Hoar, The production and the breakdown of the passivity of metals, Corrosion Science 7/6 (1967) 341-355, DOI: https://doi.org/10.1016/S0010-938X(67)80023-4.
  • [13] J.-L. Delplancke, R. Winand, Galvanostatic anodization of titanium I. Structures and compositions of the anodic films, Electrochimica Acta 33/11 (1988) 1539-1549, DOI: https://doi.org/10.1016/0013-4686(88)80223-8.
  • [14] J.-L. Delplancke, R. Winand, Galvanostatic anodization of titanium II. Reactions efficiencies and electrochemical behaviour model, Electrochimica Acta 33/11 (1988) 1551-1559, DOI: https://doi.org/10.1016/00134686(88)80224-X.
  • [15] U. Diebold, The surface science of titanium dioxide, Surface Science Reports 48/5-8 (2003) 53-229, DOI: https://doi.org/10.1016/S0167-5729(02)00100-0.
  • [16] A Ashrafizadeh, F. Ashrafizadeh, Structural features and corrosion analysis of thermally oxidized titanium, Journal of Alloys and Compounds 480/2 (2009) 849-852, DOI: https://doi.org/10.1016/j.jallcom.2009.02.079.
  • [17] J. Dutta Majumdar, B.L. Mordike, S.K. Roy, I. Manna, High-Temperature Oxidation Behavior of Laser-Surface-Alloyed Ti with Si and Si + Al, Oxidation of Metals 57/5-6 (2002) 473-498, DOI: https://doi.org/10.1023/A:1015300405051.
  • [18] A.W. Hansen, L.V.R. Beltrami, L.M. Antonini, D.J. Villarinho, J.C. Klein das Neves, C.E.B. Marino, C. de Fraga Malfatti, Oxide Formation on NiTi Surface: Influence of the Heat Treatment Time to Achieve the Shape Memory, Materials Research 18/5 (2015) 1053-1061, DOI: http://dx.doi.org/10.1590/1516-1439.022415.
  • [19] M. Wilk, L. Klimek, Oxide layers on titanium obtained by anodizing in orthophosphoric acid, Archives of Materials Science and Engineering 94/1 (2018) 11-17, DOI: https://doi.org/10.5604/01.3001.0012.7803.
  • [20] G. Machalska, M. Noworolnik, M. Szindler, W. Sitek, R. Babilas, Titanium dioxide nanoparticles and thin films deposited by an atomization method, Archives of Materials Science and Engineering 100/1-2 (2019) 34-41, DOI: https://doi.org/10.5604/01.3001.0013.6000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f57b7794-45c3-41c9-8d3e-6f68abbf92ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.