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Abstract

In this paper, we look closely at the issue of contaminated data sets, where apart from
legitimate (proper) patterns we encounter erroneous patterns. In a typical scenario, the
classification of a contaminated data set is always negatively influenced by garbage pat-
terns (referred to as foreign patterns). Ideally, we would like to remove them from the
data set entirely. The paper is devoted to comparison and analysis of three different mod-
els capable to perform classification of proper patterns with rejection of foreign patterns.
It should be stressed that the studied models are constructed using proper patterns only,
and no knowledge about thecharacteristics of foreign patterns is needed. The methods are
illustrated with a case study of handwritten digits recognition, but the proposed approach
itself is formulated in a general manner. Therefore, it can be applied to different problems.
We have distinguished three structures: global, local, and embedded, all capable to elim-
inate foreign patterns while performing classification of proper patterns at the same time.
A comparison of the proposed models shows that the embedded structure provides the
best results but at the cost of a relatively high model complexity. The local architecture
provides satisfying results and at the same time is relatively simple.

Keywords: data mining, knowledge engineering

1 Introduction

Classification is one of the most popular prob-
lems in the area of machine learning. There is a vast
amount of literature devoted exclusively to various
classification methods. However, it is worth to ap-
proach the task of classification from the point of

view of practical problems. Poor data quality is one
of the issues that affect classification results. A spe-
cific example of data quality issue is the contamina-
tion of data sets. Contaminated data sets consist not
only of relevant (proper) patterns but also of irrel-
evant (erroneous) patterns, which, for instance, ap-
peared by an error. In this paper, we use names of
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native patterns and foreign patterns to distinguish
between legitimate (proper) and erroneous, abnor-
mal patterns. It is worth to notice, that foreign pat-
terns cannot be seen as outliers, novelties, etc., be-
cause we cannot assume that their origins, charac-
teristics, etc. are known.

It is worth to underline, that foreign patterns are
any abnormal input data presented to a classifiers
already constructed and that no assumption about
foreign patterns can be made at the stage of the clas-
sifier construction.

In a standard pattern recognition task, all pat-
terns are assigned to one of the available classes.
Foreign patterns negatively affect the quality of
classification, as they do not belong to any class, but
a classifier assigns a class label anyway. One may
suggest a straightforward solution, to treat foreign
patterns as yet another class and train a classifier
on such an extended set of classes. Unfortunately,
this approach is not feasible, because, as we men-
tioned, we cannot assume that representatives of
foreign patterns are known at the stage of classifier
construction. Moreover, even when some foreign
patterns are available at the stage of classifier con-
struction, we cannot assume that they all will form
a coherent class or classes in the future. We have to
mind, that foreign patterns may be highly dissim-
ilar to patterns belonging to other classes. There-
fore, it is necessary to propose a generalised solu-
tion, which is not limited to rejecting certain kinds
of foreign patterns.

Having the above in mind, we see the need
for classification models reinforced with a foreign
pattern rejection option. Such models should be
trained on native data exclusively, and they should
be able to:

a) reject foreign patterns, what is the main goal of
the research presented in this study,

b) classify native patterns, what can be seen as
a complementary goal.

The objective of the study presented in this pa-
per is to propose various classifier compositions
(cascading classifiers) that put together at a specific
order and trained according to specific schemes are
able to achieve the above-mentioned tasks. We in-
tended to make use of already existing data process-
ing algorithms in order to provide ensemble models

that are capable not only of classification but also of
foreign patterns of rejection.

This research was motivated by our experiences
with various real-world applications dealing with
pattern recognition. Contaminations in data origi-
nate due to many reasons: blurry images, not prop-
erly isolated signals, multiple objects surrounding
an object of interest, noisy environments, techni-
cians’ errors, etc. It is worth to stress that no as-
sumption is made on contamination reason, anyone
listed here is possible. We believe, that applying
and building on known algorithms has its practi-
cal benefits. Implementation of processing schemes
introduced in this paper does not require a change
of data analysis environment and programming lan-
guage. We see the designed rejection tools as an ad-
ditional component in a broader scheme of pattern
recognition. Therefore, implementation of the pro-
posed methods can be performed based on a classi-
fier that one planned to use anyway. Alternatively,
one can employ any other classifiers as a base for
the rejection mechanism.

The novelty of the presented study is not in
the particular algorithms we use, but in the way
how we use them and what we achieve. The pro-
posed schemes for foreign patterns rejection based
on compositions of classifiers is a novel contribu-
tion. In contrast to the methods available in the liter-
ature, the choice of a particular classification algo-
rithm performing classification and rejection tasks
depends on the model designer, what assures sub-
stantial flexibility.

In this paper, we summarise progress in the
area of foreign patterns rejection based on ensem-
ble classifiers. We present a thorough overview and
comparison of various models. The study addressed
in this paper is a continuation of our work reported
in [1].

The paper is structured as follows. In Section 2,
we present a brief literature review on data process-
ing methods that deal with foreign patterns. Sec-
tion 3 is devoted to a theoretical presentation of
different classifier compositions: global, local, and
embedded. In Sections 4 and 5, we present experi-
ments. Section 6 concludes the paper.
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2 Literature Review

Research on the issue of contaminated data sets
evolved over time. Studies on outliers were one
of the most important start points. Among early
works on outliers, we find [2] and [3]. Outliers be-
long to a native data set, but they differ substan-
tially from the majority of data. It was an appar-
ent observation, that some processing methods, in-
cluding popular least squares estimates for regres-
sion models or some centroid-based clustering tech-
niques, were not robust with respect to outliers.
Hence, researchers developed a range of methods
for outlier detection. Many of these approaches
tell to eliminate observations, that significantly dif-
fer from some central tendency in data. A suitable
cut threshold could be based on the data disper-
sion measure. A simple example is to apply the
Chauvenet’s criterion for discarding outlying ob-
servations based on mean and standard deviation,
which was recently elaborated on in [4]. Another
simple test for outlier detection is the Grubb’s test
also based on sample mean and on the maximal dis-
tance between the mean and a data point, which was
recently applied in an interesting study in [5]. An-
other well-known statistical test for outlier identifi-
cation is the Tukey’s HSD (honest significant dif-
ference) test which uses pairwise comparisons of
means, recently revisited in [6]. It shall be stressed,
that the recalled research has been conceived on the
grounds of statistics and there are certain assump-
tions on data properties, which have to be satisfied,
in order to conduct those tests.

The variety of problems that fall into the scope
of machine learning demanded new solutions to
deal with contaminated data sets. Just removing
outliers turned out to be insufficient. The main
drawback of removing outliers is that it decreases
the size of a native data set, what in some applica-
tions is not acceptable. Native data points that are
dissimilar to the majority of data could represent
infrequent, but very valuable subjects. Removing
such data points from a training set makes it impos-
sible for a recognition algorithm to learn to clas-
sify them. The necessity to keep outliers in a data
set is especially crucial in active learning schemes,
in which we want a learning algorithm to gradually
adjust to an incrementally changing data stream.

In addition, we must acknowledge, that in
a challenging data set, apart from outliers, which
are actually native patterns but highly dissimilar to
the majority of data, we may encounter other kinds
of patterns. In particular, let us now focus on the
novelty detection task, which could be viewed as
a special case of the foreign pattern rejection prob-
lem.

Novelty detection is the task of identifying un-
seen data, that differs from the data available dur-
ing training, [7]. In other words, we aspire to form
a classifying model, that has been trained based on
samples from the proper class only but is capable
to distinguish proper class samples from previously
unseen novelty patterns. A typical scenario, in
which we employ a novelty detection algorithm, is
when a minority class is extremely infrequent, and
we are unable to form a classifying model capable
to correctly recognise the infrequent class. A do-
main, in which novelty classification is frequently
applied, is text mining. It is worth to mention,
that in the literature novelty detection is sometimes
termed as one-class classification. Novelty detec-
tion, even when it concerns a data set with multiple
classes, can be reduced to the task of constructing
a one-class model. Elements not accounted to this
one class are treated as novelties.

There is a wide spectrum of probabilistic ap-
proaches to novelty detection. This group of meth-
ods links past theoretical research on outliers with
modern data processing algorithms. The underlying
objective of these methods is to estimate a genera-
tive probability density function of the training data.
Assuming that we have found out data distribution,
we may propose a threshold-based method that dis-
tinguishes regular data from novelties. Since chal-
lenging data require sophisticated methods, it be-
came a popular technique to represent data distribu-
tion using a mixture of models. Particular examples
of such approach are based on Gaussian distribu-
tions (the so-called Gaussian mixture models), [8],
but other distributions were considered as well. For
instance, mixtures based on gamma distribution are
considered in [9], while Poisson mixtures are ad-
dressed in [10]. Model parameters need to be es-
timated, for instance, using maximum likelihood
methods. Mixture-based methods rely on a rela-
tively small number of distinct distributions, usually
fewer than the number of classes in a data. In con-
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trast, a related group of the so-called density esti-
mation methods requires a large number of distinct
kernels to cover the data, [11].

Among other noteworthy approaches to novelty
detection, we shall mention methods tightly con-
nected to the notion of distance. They operate in
a multidimensional space of features and rely on
the assumption that proper data forms clusters in
this space, while novel elements are scattered far
from these clusters. In contrast to statistical ap-
proaches, application of these methods is not lim-
ited to data following a specific distribution. How-
ever, it is necessary to select a distance measure and
an evaluation method. For example, in [12], we
read about a method evaluating distance of a po-
tential novelty to its k nearest neighbours. In [13],
we find an approach relying on a distance to an av-
erage of k nearest neighbours. Another noteworthy
novelty detection method, the so-called Local Out-
lier Factor, has been presented in [14]. This method
calculates ratios of local density of an area around
a potential novelty element and local densities of its
neighbours. Later, the Local Outlier Factor method
has been modified and improved, in order to effi-
ciently deal with more challenging and large data
sets. Furthermore, a variety of approaches to nov-
elty detection is based on clustering algorithms, for
instance, the fuzzy c-means [15] or the agglomera-
tive clustering [16].

A well-known novelty detection algorithm is
one-class SVM (Support Vector Machines), often
referred to as V-SVM or novelty detection SVM.
An in-depth elaboration on this method is presented
in [17] and [18]. The one-class SVM detects a soft
boundary of a set. In consequence, we are able to
assess, which elements surely belong to this class,
and which do not. A training procedure of the
V-SVM is governed by the 0 < v < 1 parameter,
which should be tuned in an appropriate validation
procedure. Too small value of the v increases the
risk of overfitting, too large may cause underfitting.

An interesting approach to anomaly detection
based on a multiple kernel learning approach for
the One-class Classification task is outlined in [19].
Localized Multiple Kernel learning approach for
Anomaly Detection with One-class Classification
method is proposed as an extension of known
Multi Kernel Anomaly Detection, LMKAD, algo-
rithm. LMKAD provides a localized formulation

for multi-kernel learning method by local assign-
ment of weights to each kernel.

Moreover, the literature offers approaches to
foreign patterns rejection, in which model training
relies on a synthesised set of foreign patterns. In
other words, foreign patterns are treated as an addi-
tional class. Hence, by executing an extended clas-
sification procedure, we identify them. Among pa-
pers discussing this method, we find [20]. In our
opinion, this approach has a limited practical poten-
tial. It is quite unrealistic to expect, that we know in
advance features of foreign patterns. If we do know
them, then are they really foreign?

It has to be stressed, that our ultimate goal was
to propose methods based on native patterns only.
Hence, the ideas discussed in this paper are closer
to the research on novelty detection than to outliers
patterns rejection approaches with synthesised ad-
ditional patterns. The closest counterpart to the ap-
proach presented in this paper could be found in the
paper by Tax and Duin [21]. In the cited paper, the
authors proposed to combine one-class classifiers,
in order to solve the outliers identification prob-
lem in a data set of handwritten digits. The study
shows, that the best combination of individual one-
class classifiers used the Parzen density estimator.
A noteworthy observation was made, that combin-
ing classifiers trained in different feature spaces in-
creased chances for outlier detection.

In light of the described developments in the
areas of foreign patterns rejection and the related
fields, let us highlight the advantages of the contri-
bution introduced in this paper.

— We propose an approach to foreign patterns re-
jection, which could be applied to a multi-class
data set.

— A model is trained only on native data. No
knowledge about foreign patterns is needed to
construct the model.

— Rejection method relies on standard classifiers,
which are trained and set together in a specific
way.

— The proposed approach can be used in order
to improve classification quality in a dataset of
purely native patterns.
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3 Pattern Recognition with Foreign
Patterns Rejection

3.1 C(lassification — Basic Notions

Let us define a classification problem as an
action of dividing a set of patterns into subsets
based on their similarity. Let us assume, that S =
S1US2U...US|c|, where |C| is the number of all
classes in the data set, S is the set of objects and
S1,...,S|c| are its subsets that are pairwise disjoint:
(Vi# j)(SinS;=0). Amapping 6: S — C, where
C={1,2,...,|C|} is the goal of pattern recognition
(goal of classification).

We represent a pattern which we want to clas-
sify with a vector of measurable characteristics,
which are called features, and then perform classi-
fication on such description format. This can be ex-
pressed as two mappings: ¢: S — Xand w: X — C.
The first mapping ¢ is from the space of objects to
the space of features. The second mapping ® is
from the space of features to the space of classes.
It can be seen, that 6 = wo ¢ and from now on
G can be referred to as the classifier. Moreover, let
us mention, that the space of features is the real-
coordinate space of n dimensions: R".

It should be mentioned, that the set denoted as
S contains all patterns. Obviously, it is not possi-
ble to obtain such a set. Therefore, we construct
a classification mechanism on an available subset
of S. The available subset is denoted as L., S D L =
LiULyU.. .UL‘C| such that (Vi € <1, ’CD)(LZ C Si).
L is called a learning set. Furthermore, we split
the learning set into a training set (Tr) and a test
set (Ts) as follows: L = TrUTs. Each class from
the learning set is split into the training set and
the test set, namely: (Vi € (1,|C|))(TriUTs; = L;
and Tr;NTs; = 0) and Tr=TriUTrU...U TV|C‘
along with Ts = T's; UTs;U...UTsc|. The train-
ing set, comprising of native patterns only, is used
for model construction. The test set is the so-called
unseen data and it is used for model quality assess-
ment.

In this paper, we expand this model, by consid-
ering an extra set of foreign patterns Sy, which ex-
tends the set of patterns S = {S1,55,...,S|c|} to the
set 8¢ = {S51,52,...,8|c|,Sr}. Notice, that the set S
is in fact the set of native patterns.

The fundamental assumption is that foreign pat-
terns are not available at the stage of recogniser con-
struction. A standard classifier assigns class label
to every pattern presented to it. Only these labels,
which have appeared in the training set of native
patterns are available. This implies, that foreign
patterns will be always incorrectly classified at the
stage of classification.

3.2 Rejecting Foreign Patterns: Ideas and
Architectures

We envision the classification task as a par-
titioning of a set of patterns into subsets of pat-
terns that belong to the same class. When we deal
with a contaminated data set, classification should
be supplemented with a procedure of foreign pat-
terns removal (rejection) so that foreign patterns do
not end up in subsets reserved for native patterns.
A “physical” output of a classifying and rejecting
mechanism is a labelling of input patterns. The
mechanism assigns either one of the native class la-
bels or a special label marking a foreign pattern.

The approach, that we propose, is based on
specifically trained classifiers. We compose them
to a certain structure (one may say: architecture)
and they together provide a mechanism for native
patterns classification with foreign patterns rejec-
tion. Depending on the order of actions (classifica-
tion/rejection) we distinguish three different struc-
tures (architectures):

— global,
— local,

— embedded.

Proposed names reflect the level at which we per-
form rejection of foreign patterns. The three struc-
tures are illustrated in Figure 1.

It is of an utmost importance to distinguish be-
tween the terms “architecture” and “rejection mech-
anism”. Architectures (global, local, and embed-
ded) are scenarios (in other words: schemes, or-
ders of actions), in which we perform classification
and rejection. In contrast, a rejection mechanism
is a data processing mechanism, which after an ap-
propriate training is able to process a contaminated
set and reject foreign patterns from it. Section 3.3
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Figure 1. Rejecting architectures: global (left diagram), local (middle diagram) and embedded (right
diagram). Bins represent rejected patterns.

is devoted to the construction of rejection mecha-
nisms.

3.2.1 The Global Architecture

The global architecture is presented in the left
diagram in Figure 1. In this scenario, at first, we
reject, ideally all, foreign patterns from the input
data set. Then, we classify patterns that were not
rejected. The rejection mechanism has to be able
to identify all native patterns and distinguish them
from foreign patterns. This is a challenging task,
because native patterns may be very different. If
the rejection mechanism is not as good as we wish,
there is no other option to recover a rejected native
pattern or to reject an accepted foreign pattern.

3.2.2 The Local Architecture

The local architecture is presented in the mid-
dle diagram in Figure 1. In this scenario, at first,
we classify all incoming patterns. In this case, it is
necessary to form c rejection mechanisms, one per
each native class.

We expect, that the classifier will split the in-
coming data into ¢ subsets. Ideally, all native pat-
terns will be classified correctly. However, foreign
patterns will get classified as well, because a clas-
sifier always assigns a class label. We may assume,
that native patterns belonging to the same class are
in some sense similar. Therefore, a rejection mech-
anism positioned in a leaf in the local architecture
has to distinguish foreign patterns (that could be
very diverse) from native patterns of just one class
(that should form a consistent set).

Let us note, that it is also possible to imple-
ment the local architecture with more than ¢ rejec-
tion mechanisms. In such case, we would have to

perform a fine-grained analysis of native patterns in
each class and split a single class of native patterns
into a few subclasses based on pattern similarity. In
this scenario, we shall employ unsupervised learn-
ing in order to split a single class. However, we
have to be aware that this action may lead to over-
fitting. Implementing the local architecture with
c leaves is a justified choice, especially for balanced
data.

It is also possible and desirable, that a rejection
mechanism rejects not only foreign patterns, but
also misclassified native patterns. The capability of
a rejection mechanism to reduce the number of mis-
classified native patterns is a natural property of the
local architecture as rejection mechanisms may be
constructed on more coherent data than in the case
of the global architecture.

3.2.3 The Embedded Architecture

The embedded architecture is depicted in the
right diagram in Figure 1. In this scheme, each pro-
cessed pattern is pushed down into a c-class clas-
sifier until it reaches a leaf, where a class label is
assigned. Actions performed by the c-class clas-
sifier are followed by a rejection procedure, where
we have a chance to remove foreign patterns. The
embedded architecture is the most fine-grained.

Let us go ahead the main narration at this point
and present a particular example of an embedded
architecture implemented in experiments discussed
later in this paper. It is a model based on binary
classifiers organised in a binary tree. We are deal-
ing with the problem of handwritten digits recog-
nition, and the data set we have is contaminated
with various foreign patterns. In a similar way as
in [22], we applied spectral clustering to evaluate
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the similarity of native classes. It revealed, that the
best binary split for the entire native data set is into
the following subsets of classes: {0,2,3,5,6,8} and
{1,4,7,9}. Then, the first subset is split into {0,6}
and {2,3,5,8}, and so on. The full structure is
displayed in Figure 2. Let us reiterate, that in the
embedded architecture a tree of binary classifiers,
which consecutively splits data into smaller subsets,
is the base for classifying and rejecting mechanism.
A formed tree is supplemented with rejection mech-
anisms, which are placed after each binary split ex-
cept the split in the root. The reason is that a reject-
ing mechanism designed as described in Section 3.3
is useless in the root.
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Figure 2. An illustration of the embedded
architecture implemented for the case study of
handwritten digits recognition. “S” denotes
a binary split into two subsets, “R” denotes
a rejection mechanism. A bin represents foreign
patterns.

As we see in Figure 2, even for a relatively sim-
ple data set with only ten classes, the embedded ar-
chitecture is relatively complex. It is possible to re-
duce this complexity by removing some rejection
mechanisms.

The proposed architectures differ in their com-
plexity. The simplest is the global rejection archi-
tecture. In this case, we have one rejection mecha-
nism and one c-class classifier (¢ denotes the num-
ber of native classes). The local rejection architec-
ture has one c-class classifier and c rejection mech-
anisms. The most complicated is the embedded ar-

chitecture, where we have ¢ — 1 binary classifiers
and in the most complex case 2 - (¢ — 1) rejection
mechanisms.

3.3 Construction of Rejection Mechanisms

Up to this point, we have only discussed scenar-
ios, in which we perform actions leading to the clas-
sification of native patterns and rejection of foreign
patterns. In order to adapt the method for a particu-
lar data processing problem, it is necessary to:

a) select classifiers (a c-class classifier for the
global and the local architecture, a tree of binary
classifiers for the embedded architecture),

b) select rejection mechanisms.

Selection and training of classifiers for the
global and the local architecture do not differ from
a usual multi-class classification scenario. Itis up to
the model designer to choose an appropriate classi-
fication method. A non-typical classifier is required
in the embedded architecture. However, combining
binary classifiers for a multi-class classification is
an approach already present in the literature, for in-
stance in [23] and [24].

The second important component of the pro-
posed architectures, that needs customization is
a rejection mechanism. Alike classifiers, rejection
mechanisms have to be formed based on native pat-
terns only. It is worth to underline, that we have
no knowledge about foreign patterns at the stage
of model construction. Therefore, rejection mech-
anisms are realised with appropriately trained clas-
sifiers. There are two classifier learning strategies,
which we may choose: one-class and binary.

3.3.1 One-class Classifiers for Rejection

One-class rejection mechanisms, by analogy to
novelty detection methods presented in Section 2,
aim at designing a model that describes native pat-
terns. A one-class rejection mechanism treats all
native patterns as if they belong to a single class
and provides a decision rule for the identification of
native patterns. Let us recall, that these approaches
involve approximations of native data distribution,
often apply notions of similarity or proximity.

One-class rejection mechanisms have not been
considered in the study presented in this paper, be-
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cause they are too well-known. However, we have
applied them alone (not as an element of an archi-
tecture) for the sake of comparison. In Section 5.5,
we contrast our results with literature-based ap-
proaches.

3.3.2 Binary Classifiers for Rejection

Binary rejection method aims at splitting a set
of patterns into two sets: native and foreign. It is
composed of one or a few binary classifiers trained
only on native patterns. Let us reiterate, we never
involve foreign patterns in the training process. The
ability to discriminate between native and foreign
patterns is gained due to a specially conducted train-
ing procedure. In a binary classifier trained for re-
jection, we distinguish a native class (let us call it
a “pro” class), and the second class, which is a spe-
cial substitute (let us call it a “contra” class). A re-
jection mechanism based on a collection of binary
classifiers is suited well to deal with multi-class
classification problem.

In this paper, we assume that a given set of na-
tive patterns creates the class “pro”, while remain-
ing native patterns form the class “contra”. For ex-
ample, let us consider classes {2,3,5,8} in one of
the nodes of the tree, cf. Figure 2. This set of classes
is split to two subsets of similar classes ({2,3}
and {5,8}). Thus, the native set {2,3} creates
the class “pro”, while the set of the other classes
({0,1,4,5,6,7,8,9}) plays the role of the “contra”
class. In other words, the rejection mechanism ac-
companying native classes {2,3} is a binary classi-
fier that distinguishes native classes {2,3} versus all
other native classes in the data set. Alike, the set of
digits {5, 8} creates the class “pro”, while the set of
digits {0,1,2,3,4,6,7,9} forms the class “contra”.
Binary rejection mechanisms in the embedded ar-
chitecture need to reject foreign patterns from sub-
sets that are designed to contain more than one class
of native patterns.

The described approach is straightforward for
the local rejection architecture, where rejection is
launched separately for each single native class (see
the middle diagram in Figure 1). In the local archi-
tecture, we construct ¢ rejection mechanisms, so we
train ¢ binary classifiers one-versus-all-else for re-
jecting.

The situation is slightly different in the global
architecture, where a rejection mechanism needs to
reject foreign patterns from a set of all native pat-
terns (cf. the left diagram in Figure 1). In such
a case, we build ¢ binary classifiers, one for each
native class, alike in the local architecture, and then
employ a simple voting rule. If we want to deter-
mine whether a given pattern is foreign, we look
if any rejection mechanism accounted it as native.
Only if none of the rejection mechanisms say that
the pattern is native, we reject it. Since this method
is firmly based on known (native) classes, it may be
seen as a supervised scheme. This method may be
also implemented in an unsupervised mode, when
no split of native patterns to classes is known. We
discuss such example in Section 5.4.

It shall be mentioned that the procedure of for-
eign patterns rejection may be imperfect. It means,
that not all foreign patterns may get rejected and
some of native patterns may get rejected too. What
is more, native patterns classification may be im-
perfect as well. Not rejecting a foreign pattern is al-
ways an unfavourable situation. However, when re-
jecting a native pattern, we may envision two cases:

— a native pattern, which would have been cor-
rectly classified, is rejected. This is an unwel-
come situation, because it decreases the number
of correctly classified patterns and, thus, it wors-
ens recognition quality.

— a native pattern, that would have been incor-
rectly classified, i.e. a classifier would have as-
signed an incorrect class label, is rejected. In
this scenario, rejecting mechanism increases the
quality of classification.

Therefore, adding a rejection mechanism could be
justified as well, when the cost of misclassification
is high, and it is better to reject a native pattern than
to classify it into an incorrect class.

3.4 Model Quality Assessment

A study on foreign patterns rejection entails the
need for appropriate quality assessment methods.
Standard techniques, typically applied to evaluate
classification effectiveness, need to be adapted, in
order to describe the effectiveness of classification
reinforced with rejection. It has to be stressed, that
a badly designed rejection mechanism may hinder
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the quality of classification, while a good rejection
mechanism can improve it. Hence, we shall look
closely both at classification and rejection rates.
The following notions are used:

CC (Correctly Classified) — the number of native
patterns with a correct class label,

TP (True Positives) — the number of native patterns
classified as native (no matter, with which native
class label),

FN (False Negatives) — the number of rejected na-
tive patterns,

FP (False Positives) — the number of foreign pat-
terns incorrectly classified as native,

TN (True Negatives) — the number of rejected for-
eign patterns.

Note: TP, FN, FP and TN are widely used in lit-
erature in the context of binary pattern recognition.
Here, we adapt them to describe rejection quality.
Based on these notions, we define the following
measures to evaluate the quality of a classifying and
rejecting model:

Accuracy = (TP+TN)/(TP+FN+FP+TN)
Strict Accuracy = (CC+TN)/(TP+FN+FP+TN)
Fine Accuracy = CC/TP
Native Precision = TP/(TP+FP)
Native Sensitivity = TP/(TP+FN)
Strict Native Sens. = CC/(TP+FN)
Foreign Precision = TN/(TN+FN)

TN/(TN+FP)
Precision - Sensitivity

Foreign Sensitivity

F-measure =

Precision+Sensitivity

We have already discussed the above character-
istics in [22]. Hence, we do not repeat this informa-
tion in this paper.

The higher the value of these measures, the bet-
ter the quality of classification with rejection. How-
ever, an increase in one measure can lead to a de-
crease in another. In practice, depending on ap-
plication, one measure may reveal more important
information than another. For instance, if a prior-
ity is given to minimization of the number of for-
eign patterns identified as native, then Native Preci-
sion should be of a higher importance than the other

measures and it should be maximised. On the other
hand, if the highest priority is given to minimization
of a loss of native patterns, then one should focus on
Native Sensitivity, and so on.

Pattern recognition reinforced with a rejection
mechanism employed to process a set of native pat-
terns may be a viable choice for pattern recognition
problems, in which misclassification might gener-
ate much greater loss than a lack of classification.
Two measures are appropriate to evaluate the qual-
ity of a rejecting mechanism in this case: Strict Na-
tive Sensitivity and Fine Accuracy. It is worth to
notice, that if foreign patterns are absent, quantities
such as TN and FP are not relevant. Therefore, Ac-
curacy becomes identical to Native Sensitivity and
Strict Accuracy to Strict Native Sensitivity. Further-
more, in the case of pure recognition (that is, with-
out rejection) only two quantities: CC and TP are
relevant. Therefore, it only makes sense to calculate
the ratio of correctly classified patterns to all pro-
cessed patterns. If we assume that CC is the number
correctly classified patterns and TP is the number of
all patterns being processed, while TN, FP and FN
are absent, then Strict Accuracy and Strict Native
Sensitivity are identical to Fine Accuracy.

4 Empirical Study - Settings

4.1 Data Sets
4.1.1 Native Patterns

The empirical study is focused on handwrit-
ten digits recognition. The data set of native pat-
terns consists of 10,000 images of handwritten dig-
its, approximately equally divided into ten classes
(c = 10). It is publicly available in the MNIST
database, [25]. Figure 3 presents samples of native
handwritten digits. The data was split into train-
ing and native test sets in proportion 6999 and 3001
patterns, respectively. The training set was used
for model construction, while the test set for qual-
ity evaluation only. In the experiments presented in
this paper, the native test set was contaminated us-
ing various methods, as described in Section 4.1.2.
Contaminated data sets were presented to the input
of formed rejection/classification models to evalu-
ate the quality of the outcome. We use measures
presented in Section 3.4. In order to provide a fair
comparison, if the number of patterns in a data set
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of foreign patterns differs from the number of pat-
terns in the native set, we use scaling factors, so
that the influence of foreign patterns on the quality
measure is the same as the influence of native pat-
terns. Some of foreign data sets (we describe them
in Sections 4.1.2 — 4.1.4) contain different number
of patterns that the native data set.

CO/IZAVDIHYSSb6T77¥ 607

Figure 3. Samples of handwritten digits (native
patterns).

Each native pattern has been described using
a set of 106 numerical features, which we presented
in [22] and we do not recall here due to space lim-
itations. Features have been computed based on
monochromatic (black and white) images. Out of
106 features, 26 have been selected using R pack-
age “FSelector”. We have used one of wrapper fea-
ture selection methods, namely forward search. It is
a greedy search that starts from an empty set of fea-
tures and adds one-by-one a new feature. Selection
of a particular feature is performed using a ranking
computed by training a classifier of choice on sub-
sets of features. In our experiment, we have imple-
mented an evaluation function based on a ¢ = 10-
class SVM. Of course, it can be argued that wrap-
per methods for feature selection are computation-
ally demanding and, ideally, shall be repeated when
we change a classifier. On the other hand, wrapper
methods are known to provide good results.

In addition, after the forward search returned 26
features, we performed analysis of variance, which
led us towards elimination of two more features,
which were highly correlated with others. In the
end, our data set was made of 24 features.
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Figure 4. Samples of semi-synthetic foreign
patterns. Distorted patterns, from the top: crossed
out, rotated clockwise and rotated anticlockwise.

4.1.2 Semi-synthetic Foreign Patterns

For test purposes, we have prepared several sets
of semi-synthetic foreign patterns. They were cre-
ated based on the set of images of native patterns,

i.e. the set of handwritten digits. Images of hand-
written digits were distorted, in order to obtain real-
istic foreign patterns, cf. next paragraph. It is worth
to notice, that empty (white) patterns distorted with
randomly inverted pixels are trivial to reject, as re-
ported in [22].

In this study, the following semi-synthetic for-
eign patterns are considered:

— native patterns crossed out with digits 1 rotated
by £45°, forming upper case “X” (we call it for
short — X set),

— native patterns rotated clockwise and anticlock-
wise by 90° (for short — 90 set), the set of native
patterns was randomly split to equal subsets to
be subjected to rotations in both directions.

Samples of semi-synthetic foreign patterns are dis-
played in Figure 4. We may expect, that in a real-
world handwritten digits processing scenario, it is
also very likely, that foreign patterns would be dis-
torted images of symbols of some kind. For in-
stance, digits may be crossed out by an agent or
a distortion may be generated by a malfunctioning
optical character recognition software.

4.1.3 Handwritten Letters as Foreign Patterns

A data set of handwritten Latin letters is another
kind of foreign patterns in our experiments. This
set consisted of 26,383 patterns, ca. 1000 copies of
each letter. It was created by 16 students, writing
about 70 copies of each letter. Samples are pre-
sented in Figure 5. The foreign data set of handwrit-
ten letters was represented with the same 24-feature
vector as the native set of handwritten digits.

4.1.4 Kannada Symbols as Foreign Patterns

Lastly, we consider a set of Kannada symbols
as foreign patterns. Kannada is one of few Dra-
vidian languages spoken mainly in India by ca. 50
million speakers. The set of Kannada letters com-
prises of 49 symbols. However, the actual number
of characters in Kannada is larger, because single
letters can be combined to form compound charac-
ters. Detailed information regarding used Kannada
data sets, including a link to the data, is available
in [26]. The set of handwritten Kannada characters
contains over 650 very imbalanced classes. A few
selected samples (after preprocessing) are displayed
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in Figure 5. By analogy to the representation of na-
tive data, the foreign data set of Kannada characters
was normalised and made monochromatic. In the
end, the foreign data set of handwritten Kannada
characters consisted of 9,107 samples. As in the
case of the data set of native patterns, all Kannada
samples were represented with a 24-dimensional
feature vector.

abcdetghijldmmepgrifuvvyge
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Figure 5. Samples from foreign data sets:
handwritten Latin alphabet (the first row) and
handwritten Kannada symbols (the second row).

4.2 Experiment Settings

The objective of the empirical study is to inves-
tigate and compare the three architectures: global,
local, and embedded. We have selected random
forest (RF) and Support Vector Machines (SVM)
as particular classifiers to construct these architec-
tures.

Both random forest and SVM are very popular
machine learning methods. Hence, we do not con-
tinue with their in-depth description. In this study,
they serve us as viable examples, which could be
considered to construct classifying/rejecting archi-
tectures.

Random Forests

Random forest, introduced by L. Breiman and
A. Cutler, is an ensemble machine learning method
based on a multitude of appropriately formed de-
cision trees, [27]. In our experiments, for each
random forest, we trained by average 500 trees,
the number of variables for which we obtained
splits was individually tuned. We have been us-
ing a voting scheme to determine class belonging-
ness, where each classifier in the ensemble votes for
a class. We used “tuneRF” function from R package
“randomForest” for tuning. The number of trees in
a forest was selected experimentally from the set
{300, 350,400,450,500,550,600,650}. Construc-
tion of random forests was realised with the func-
tion “randomForest” from the same package.

Support Vector Machines

SVMs are based on a concept, that we may
define planes, in order to determine decision re-
gions for classification. In order to adjust a “lin-
ear” (basic) SVM to a more demanding data sep-
aration tasks, we apply kernels. SVMs, in their
elementary form, are binary classifiers. In order
to provide multi-class classification capabilities, we
form a collection of binary classifiers. Many popu-
lar implementations, including the one used in our
study, apply a “one-against-one” approach. If ¢ is
the number of classes, then ¢- (¢ — 1)/2 classifiers
are constructed, and each one is for a pair of classes.
Next, a voting scheme is applied to determine ap-
propriate class label.

In our study, we used the function “svm” imple-
mented in R package “e1071”. SVM parameter tun-
ing has been performed with “tune” function from
the same package. In all experiments, we trained
SVMs based on Radial Basis Function (RBF) ker-
nel. We have selected the RBF kernel, because our
data is not linearly separable in the original feature
space. In such a case, it is a common approach to
apply the RBF kernel. Two parameters have to be
considered and tuned: cost and y. The cost parame-
ter determines a trade-off between misclassification
of training examples and the simplicity of a decision
surface. y determines the influence of a single train-
ing example. In all cases, 10-fold cross-validation
has been applied.

Global Architecture

In global architectures instantiated in the exper-
iment, rejection mechanisms were based on collec-
tions of ¢ = 10 binary classifiers, one for each class
of native patterns: either binary random forests or
SVMs. Each classifier was trained to separate one
class (playing the role of “pro” class) from all other
classes of native patterns (simulating “contra” pat-
terns). An unknown pattern was assumed to be for-
eign, if all ¢ = 10 binary classifiers assigned it to
the class simulating the “contra” patterns.

Local Architecture

In local architectures, either random forest or
SVM was used for classification. Then, correspond-
ingly, for each native class, a binary random forest
or an SVM was employed to reject foreign patterns.
A rejection mechanism is paired with each native
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class. Rejecting classifiers were trained alike in the
case of global architecture. However, unlike in the
case of the global architecture, a pattern classified
to a given native class is rejected if the correspond-
ing rejecting mechanism rejects it, cf. Figure 1.

Embedded Architecture

In order to construct embedded architectures,
a binary tree of classifiers was used, as discussed
in Section 3.2.3. Let us recall, that in the embedded
architecture, we start with the full set of patterns
and we are sequentially performing binary splits.
Splitting stops, when we end up with a subset of
patterns assumed to belong to a single native class.
Each split is accompanied with a rejection mecha-
nism. In the experiments, we use SVMs and ran-
dom forests as internal binary classifiers and we
discuss a full embedded architecture, not a thinned
one. It is worth to mention, that the local architec-
ture could be seen as a special case of a thinned em-
bedded architecture, in which rejection mechanisms
are in leaves only. A special case of an SVM-based
embedded architecture with rejection mechanisms
based on one-class and two-class SVMs employed
only in leaves was discussed in [22].

5 Results

5.1 Recognition with Rejection — the Per-
spective of Native Patterns Only

At first, let us investigate the quality of na-
tive patterns classification provided by the proposed
architectures. We expect, that adding a rejection
mechanism will influence the classification out-
come. It would be ideal, if a rejection mechanism
would be able to reject native patterns, which would
have been incorrectly classified.

An overview of the results is presented in Ta-
ble 1. We compare global, local, and embedded
architectures based on random forests (RF) and
SVMs. Table 1 contains results on training and test
sets of native patterns. In addition, we present clas-
sification quality in a case, when we do not per-
form rejection. We see no substantial discrepan-
cies in classification rates for a case of classification
with rejection, in comparison to classification with-
out rejection. This indicates, that adding a rejection
mechanism does not hinder quality of classification.

Table 1 is divided into two parts, because we have
two classifiers. Results reported in the left part of
the table correspond to a ten-class classifier (based
either on a random forest, or on an SVM) furnished
with a rejecting mechanism available for the global
and the local architectures. Results reported in the
right part of the table come from a compound classi-
fier based on binary classifiers arranged in a binary
tree furnished with rejecting mechanisms, applica-
ble in the embedded architecture.

All procedures have been conducted with a ten-
fold cross-validation in order to avoid overfitting.
Still, results on the training set are better than on
the test set. Nonetheless, classification rates on the
test set are satisfactory. It is worth to draw atten-
tion to Strict Accuracy and to Fine Accuracy. Strict
Accuracy was lower for random forests than for
SVMs. However, Fine Accuracy was at a compa-
rable level for both methods. On the test set, for
recognition without rejection, Strict Accuracy and
Fine Accuracy (recall that Strict Accuracy, Strict
Native Sensitivity and Fine Accuracy are equal in
this case) were at the level of 95-96%. Adding re-
jection mechanisms worsened Strict Accuracy and
improved Fine Accuracy. Strict Accuracy got worse
by 1-6%. In contrast, Fine Accuracy was raised to
the level of 98% for both classification methods and
all three architectures and the increase was the most
remarkable for the embedded architecture. Results
show that the local architecture causes the smallest
deterioration in quality of native patterns classifica-
tion. On the other hand, results indicate, that the
embedded architecture has the greatest capability
to improve classification rates of a malfunctioning
classifier.

5.2 Recognition with Rejection for Native
and Semi-Synthetic Foreign Patterns

Let us compare the quality of rejection provided
by the proposed architectures. Figure 6 illustrates
quality measures for different models applied to
various semi-synthetic foreign patterns.

Results indicate, that the prime aspect affecting
the outcome is the character of a data set. The most
difficult to reject were rotated digits, what is coher-
ent with intuition, as the other distortions disrupted
shapes in images to a greater extent. It is worth to
emphasise, that we did not expect a perfect rejec-
tion rate for semi-synthetic patterns, because all dis-
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Table 1. Comparison of classification results with rejection (global, local, and embedded architectures) on
training and test sets of native patterns with classification results without rejection. RF — results for random
forests, SVM — results for Support Vector Machines. Notice, that in the case of absence of foreign patterns
Strict Accuracy is equal to Strict Native Sensitivity, Accuracy is equal to Native Sensitivity and Native
Precision is equal to 1 and, for classification without rejection, Strict Accuracy is equal to Fine Accuracy

and it does not make sense to consider Accuracy (formally, it is equal to 1).

¢ = 10 class classifier A tree of binary classifiers
Arch. Global Local no rejection || Embedded | no rejection
Base Class.|| RF SVM| RF SVM| RF SVM| RF SVM| RF SVM
Data Set Native Patterns, Training Set
Fine Acc. || 100 99.8| 100 99.8| 100 99.7| 100 99.8| 100 99.2
Strict Acc. || 100 99.5| 100 99.5| 100 99.7| 100 99.1| 100 99.2
Accuracy || 100 99.7| 100 99.7| — —|| 100 99.3| — —
Data Set Native Patterns, Test Set
Fine Acc.||97.7 97.8|97.9 98.1/95.2 96.5|/98.2 98.4|88.2 94.0
Strict Acc. || 88.3 94.6|88.2 94.5/95.2 96.5(/87.8 93.5|88.2 94.0
Accuracy [90.3 96.7/90.1 96.3| -— —189.4 950| -— —

tortions, which we introduced, were moderate. For
instance, handwritten digit O rotated by any degree
looks very similar to a “regular” 0, a crossed out
handwritten digit 8 looks very similar to a “regular”
8, and so on. This intuition is confirmed by the re-
ported values of Native Sensitivity and Foreign Pre-
cision, which are close to 1. Indeed, the smaller
the number of false negatives, the higher the values
of these measures. On the other hand, moderate or
even small values of Native Precision and Foreign
Sensitivity are caused by a higher number of false
positives. The reason for that is that many foreign
patterns were incorrectly accounted as native.

When we compare results obtained using the
three architectures: global, local, and embedded,
we see that the performance of the global model is
the worst. In all cases, both the local and the em-
bedded model provided better rejection rates. It is
difficult to decide, which model was better: local
or embedded. Experiments show, that they achieve
comparable results. However, the embedded model
is far more complex than the local model. On one
hand, the embedded architecture could be subjected
to custom tuning to an extent greater than the local
architecture. However, the local architecture pro-
vides us with comparable results and is fairly sim-
ple to construct.

In general, models based on random forests per-
formed on tested semi-synthetic patterns better than

architectures constructed with SVMs, except Na-
tive Sensitivity and Foreign Precision, where SVM-
based models were slightly better.

5.3 Recognition with Rejection when Let-
ters Were Used as Contaminations

Figure 7 presents the quality of classifica-
tion and rejection models employed for data sets,
in which handwritten digits were native patterns,
while handwritten Latin letters and handwritten
Kannada characters were foreign patterns.

In a similar way to the case of semi-synthetic
foreign patterns, low values of Native Precision and
Foreign Sensitivity for the data set of handwritten
Latin letters were caused by a high number of false
positives. It means, that many letters were not re-
jected.

Kannada characters turned out to be signifi-
cantly easier to reject than handwritten Latin letters.
This result is coherent with common sense expec-
tations. A brief visual inspection of the selected
samples shown in Figure 5 reveals, that Kannada
characters are more distinct from digits than Latin
alphabet letters.

The trouble of distinguishing between hand-
written Latin alphabet letters from handwritten dig-
its is comparable to the level of difficulty when we
were processing a data set contaminated with semi-
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Figure 6. Quality measures of classification with rejection based on architectures instantiated with SVMs
and with random forests (RF). Slate gray indicates the difference (advantage) of the SVM-based model
over the corresponding random forest (RF) model. Black informs about the difference (advantage) of

[7P]

random forest-based model over SVM-based model. Plot presents results for all architectures: “g” stands
for global, “I” —local, “¢” — embedded. “X” stands for crossed out patterns, “90” are averaged results for
patterns rotated anticlockwise and clockwise by 90°.

synthetic foreign patterns that originated from dig-
its. The best performance has been achieved with
the embedded rejection mechanism. The second
best was the local rejection mechanism. The worst
results have been achieved by the global rejection
mechanism. All in all, trained mechanisms reject
foreign patterns with a relatively high rate. Foreign
F-measure is higher than Native F-measure, what
suggests that the trained models maintain a higher
capability to reject possibly distorted pattern than to
accept it as native.

In almost all cases illustrated in Figure 7, mod-
els based on random forests were outperforming
models based on SVMs. The advantage of random
forests-based models is smaller for the Latin alpha-
bet letters (the difficult characters in this compari-
son).

5.4 Further Investigation on the Global
Rejection Mechanism

Since the global rejection architecture turned
out to be less successful, in comparison with the
local and the embedded architecture, let us now in-
vestigate a scheme for improving it.

Let us reiterate, that in the global architecture,
first, we perform the action of foreign patterns re-
jection. Next, we classify patterns that were not re-
jected. In Section 3.3, we proposed to train a rejec-
tion mechanism based on binary classifiers suited

to work with a multi-class problem. A collection
of ¢ binary classifiers, one for each native class, to-
gether form a rejection mechanism. Binary clas-
sifiers are trained in a way “one-versus-all-other”
classes. Thus, we can distinguish a “pro” class,
which is made of patterns belonging to a single
class, and a “contra” class, which is made of pat-
terns belonging to all other classes. When a new
pattern is passed into the input of a rejection mech-
anism made of ¢ binary classifiers trained in this
way, we ask all ¢ binary classifiers, if this pattern
belongs to one of the c classes. Only when all clas-
sifiers assume, that it belongs to the “contra” class,
we reject this pattern.

We can modify the global rejection mechanism
and apply clustering to construct it in a more data-
aware fashion. We can easily imagine, that in
a multi-class classification problem native patterns
with the same class label may have very different
characteristics. In order to construct a rejection
mechanism, we can forgo assigned native class la-
bels and perform unsupervised partitioning of na-
tive patterns into k clusters. Subsequently, we can
assume, that cluster belongingness determines new
class membership and re-label the set of native pat-
terns using cluster labels. The number of clusters
does not have to be equal to the number of native
classes. Next, we can proceed with formation of
a rejection mechanism based on a collection of bi-
nary classifiers using labels obtained from cluster-
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Figure 7. Rejection quality for data sets made of native handwritten digits, foreign handwritten Latin
letters and handwritten Kannada symbols. “Let” stands for Latin alphabet letters, “Hnd” stands for
handwritten Kannada characters. Quality measures of classification with rejection based on architectures
instantiated with SVMs and with random forests (RF). Slate grey indicates the advantage of SVM-based
model over corresponding random forest (RF) model. Black informs about the advantage of random
forest-based model over SVM-based model.

ing. The advantage of this approach is that unsu-
pervised clustering allows construction of a truly
data-driven model. The main premise is that we
should not assume that patterns with the same class
label are coherent. Therefore, we may disregard
true class labels and we may take an advantage of
data partitioning discovered with a clustering algo-
rithm of choice.

Let us now present results of experiments with
the improved global architecture for selected data
sets. We implemented the described procedure with
the following settings. We have clustered native
data of handwritten digits into k = 3,4,...,20 clus-
ters using k-means clustering. Next, we formed
k binary classifiers. We trained them to recognize
class “pro” made of patterns belonging to a single
cluster versus class “contra” of patterns belonging
to all other clusters.

This rejection mechanism has been applied to
reject foreign patterns from a native data set of
handwritten digits contaminated with: handwritten
Latin letters and handwritten Kannada characters.
Figure 8 presents selected results.

Increasing the number of clusters on one hand
lets us form more fine-grained model, fitted better
to the data. On the other hand, we risk overfitting.
Experiments show, that as we increase the number
of clusters, increased are chances for:

— incorrectly rejecting native patterns,

— rejecting foreign patterns.

The first case is measured by Native Sensitivity,
which is equal to Accuracy computed on native pat-
terns only. The second case is reflected with For-
eign Sensitivity. Indeed, Native Sensitivity slightly
drops, and Foreign Sensitivity increases as k grows.
All in all, the increase in Foreign Sensitivity is more
substantial than the decrease in Accuracy. Looking
at Figure 8, we see that the value of k between 10
and 13 is sensible. We expected so, because the
data set of handwritten digits is not imbalanced. It
is fairly regular, so the number of discovered groups
should coincide with assigned labels. Application
of the procedure investigated in this Section is es-
pecially recommended for data, where patterns be-
longing to the same class are irregular (as it is for in-
stance in the case of music notation). Doubtless, the
choice of the appropriate number of clusters should
be based on experiments and should be performed
individually for a given native data set.

5.5 Comparison with Existing Methods

In this Section, let us present and compare se-
lected results obtained with one of our rejection ar-
chitectures and approaches discussed in the litera-
ture. We apply one-class-SVMs and centroid-based
methods to reject foreign patterns. Both one-class-
SVM and centroid-based methods are computed in
two variants. The first variant is a typical nov-
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Figure 8. Accuracy on native test set, Foreign Sensitivity for handwritten Latin letters and handwritten
Kannada characters. Results were achieved with an improved global rejection mechanism. Top plot:
models based on random forest, bottom plot — SVMs. Horizontal axis labels inform about k — the number
of clusters making the model.

elty detection scenario, when all native patterns are
treated as one class, disregarding their true native
class labels. A pattern is rejected, if this single re-
jection mechanism rejects it. The second scenario
is fine-grained. We build ten models, one for each
native class (¢ = 10 is the number of native classes
for handwritten digits). A pattern is rejected, if all
ten one-class models reject it.

The comparison concerns the local rejection ar-
chitecture, which we believe is the most versatile
model addressed in this paper. It is both relatively
easy to construct and achieves satisfying recogni-
tion and rejection rates in frames of other architec-
tures discussed in this study.

One-class-SVM  has been trained on native
training set of handwritten digits using 10-fold
cross-validation. We applied an implementation
available in the “e1071” R package. We selected
Radial Basis Function kernel. Parameters ¥ and v
were individually tuned for each model.

In the centroid-based approaches, we have ob-
tained centroids by calculating arithmetic mean of
all training patterns (the case of the one-centroid)

or means in ten classes (the ten-centroid variant).
Next, we have formed a region, the smallest sphere
with the centroid being its centre, that enclosed all
native patterns of the training set in it. In the one-
centroid method, it was one region. In the ten-
centroids method, there were ten regions, one per
each native class.

Quality measures (in %) for one-class-SVM and
for centroid-based methods are presented in Ta-
ble 2. For comparison, the first column contains
results for the local rejection mechanism instanti-
ated with SVMs.

It is interesting to compare quality measures for
the literature-based approaches. One-class-SVM
performs considerably better than centroid-based
methods. The only exception is for Foreign Pre-
cision, which is better for centroids. This effect is
explained by an almost perfect identification of for-
eign patterns achieved by centroids. SVM-based
methods incorrectly accept as native many more
foreign patterns. However, the cost of this prop-
erty is reflected with very low Native Precision.
Centroid-based methods incorrectly reject a huge
number of native patterns.
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Table 2. Quality measures for semi-synthetic and handwritten foreign symbols. We compare SVM-based
local architecture with literature-based approaches: one-class-SVMs and centroids. Reported are values for
joined training and test sets.

foreign local | 1-class SVM(s) | centroid(s)
set arch. | one ‘ ten one ‘ ten

|
. :cZ‘?s‘ 98.7 | 46.2 52.7 | 100 | 99.8
:‘g = | crossed out 774 | 100 99.5 2.6 | 10.0
§ ’éb rotated £90 || 68.3 | 99.1 98.1 0.5 8.5
= Latin 77.4 | 100 99.9 | 243 | 59.6
Kannada 719 | 100 986 | 08| 9.8
o | crossedout || 71.5 | 100 99.1 | 50.7 | 52.6
‘% rotated 90 || 54.6 | 98.1 96.5 | 50.1 | 52.2
- “ Latin 81.4 | 100 99.7 | 56.9 | 71.2
:% Kannada 77.8 | 100 97.4 | 50.2 | 52.5
S"‘: g, crossed out || 97.3 | 65.0 67.8 | 98.5 | 97.9
g rotated +90 || 96.3 | 64.8 67.5 |1 919 | 97.6
= Latin 98.3 | 65.0 67.8 | 99.8 | 99.7
Kannada 98.2 | 65.0 67.6 | 95.1 | 97.9
§ crossed out 84.7 | 73.1 76.1 | 51.3 | 549
§ rotated £90 || 76.3 | 72.7 75.4 | 50.2 | 54.2
< Latin 88.0 | 73.1 76.3 | 62.1 | 79.7
:L? Kannada 85.4 | 73.1 75.6 | 50.4 | 54.8
g 5 crossed out 84.3 71.9 9.5
£ | rotated £90 || 75.9 71.2 8.8
Latin 87.7 72.1 344
Kannada 84.9 71.4 9.5

2

iT 99.2 84.0 9.1
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The two literature-based approaches (a) turned
out to be better than the local rejection architec-
ture for some quality measures and (b) substantially
worse for some measures. Namely, only Foreign
Sensitivity and Native Precision are significantly
better for the SVM-based literature methods than
for the local architecture. This effect is yielded
by a very good rejection of foreign patterns. This
makes the TN parameter very high and FP parame-
ter very low. In all other cases, the local architecture
proves its superiority to the literature methods.

It is worth to notice, that literature-based ap-
proaches provide very low Accuracy measures (all
three of them). In other words, they reject far too
many native patterns. It is worth to draw atten-
tion to Fine Accuracy achieved by the collection of
ten one-class-SVMs. It is relatively high, which in-
dicates, that this mechanism was able to correctly
classify a vast majority of not rejected native pat-
terns. Severely low values of Strict Accuracy and
Fine Accuracy for the ten-centroids method results
from overlapping regions of different classes. Be-
cause of this, many native patterns were accounted
into two or more regions. In consequence, they
were not classified to any class.

6 Conclusions

In the paper, we discussed three architectures
capable to perform native patterns classification
with foreign patterns rejection. Studied models:
global, local, and embedded differ, first and fore-
most, in their complexity. Proposed approaches
have been tested in a series of experiments fo-
cused on handwritten digits recognition. We im-
plemented rejecting/classifying architectures using
random forests and SVMs and compared the out-
comes produced by different approaches. We com-
pared our approach with two standard novelty de-
tection techniques present in the literature.

Let us conclude by stating that the proposed
mechanisms perform very well. They are, all in all,
better than popular methods available in the liter-
ature. The literature-based approaches tend to re-
ject a lot of native patterns. Proposed architectures
maintain much more reasonable balance between
native patterns acceptance and foreign patterns re-
jection. Thus, we believe that the methods studied

in this paper are a valuable contribution to the area
of pattern recognition.

The study shows, that the best performance
could be achieved when using the embedded model.
However, this comes at a cost of a relatively high
model complexity. The embedded model requires
the highest computational and design effort. The
local architecture provides slightly worse perfor-
mance, but it is very easy to construct. In the future,
we plan to extend the study on rejection techniques
onto on-line learning strategies.

Acknowledgment

The research is supported by the National Sci-
ence Centre, grant No 2012/07/B/ST6/01501, de-
cision no DEC-2012/07/B/ST6/01501 and by the
National Natural Science Foundation of China (No.
11971065)

References

[1] W. Homenda and A. Jastrzebska, Global, local and
embedded architectures for multiclass classification
with foreign elements rejection: an overview, Proc.
of the 7th International Conference of Soft Comput-
ing and Pattern Recognition, pp. 89-94, 2015.

[2] F. J. Anscombe, Rejection of outliers, Technomet-
rics, vol. 2, no. 2, pp. 123-147, 1960.

[3] V. Barnett and T. Lewis, Outliers in Statistical Data,
3rded. Wiley, 1994.

[4] M. P. Maples, D. E. Reichart, N. C. Konz, T. A.
Berger, A. S. Trotter, J. R. Martin, D. A. Dutton,
M. L. Paggen, R. E. Joyner, and C. P. Salemi, Robust
chauvenet outlier rejection, The Astrophysical Jour-
nal Supplement Series, vol. 238, no. 1, p. 2, 2018.

[5]1 Z.Li, R.J. Baseman, Y. Zhu, F. A. Tipu, N. Slonim,
and L. Shpigelman, A unified framework for outlier
detection in trace data analysis, IEEE Transactions
on Semiconductor Manufacturing, vol. 27, no. 1, pp.
95-103, 2014.

[6] G. Yuksel and M. Cetin, Outlier detection in a
preliminary test estimator of the mean, Journal of
Statistics and Management Systems, vol. 19, no. 4,
pp. 605-615, 2016.

[71 M. A. Pimentel, D. A. Clifton, L. Clifton, and
L. Tarassenko, A review of novelty detection, Sig-
nal Processing, vol. 99, pp. 215-249, 2014.

[8] R. Rocci, S. A. Gattone, and R. Di Mari, A data
driven equivariant approach to constrained gaussian



COMBINING CLASSIFIERS FOR ...

93

mixture modeling, Advances in Data Analysis and
Classification, vol. 12, no. 2, pp. 235-260, 2018.

[9] A. Punzo, A. Mazza, and A. Maruotti, Fitting in-
surance and economic data with outliers: a flexible
approach based on finite mixtures of contaminated
gamma distributions, Journal of Applied Statistics,
vol. 45, no. 14, pp. 2563-2584, 2018.

[10] L. Xiang, K. K. Yau, and A. H. Lee, The ro-
bust estimation method for a finite mixture of pois-
son mixed-effect models, Computational Statistics
& Data Analysis, vol. 56, no. 6, pp. 1994-2005,
2012.

[11] H. Otneim and D. Tjgstheim, The locally gaussian
density estimator for multivariate data, Statistics and
Computing, vol. 27, no. 6, pp. 1595-1616, 2017.

[12] J. Zhang and H. Wang, Detecting outlying sub-
spaces for high- dimensional data: the new task, and
performance, Knowledge and Information Systems,
vol. 3, no. 10, pp. 333-355, 2006.

[13] V. Hautamaki, I. Karkkainen, and P. Franti, Outlier
detection using k-nearest neighbour graph, Proc. of
the 17th International Conference on Pattern Recog-
nition, vol. 3, pp. 430-433, 2004.

[14] M. M. Breunig, H. P. Kriegel, R. T. Ng, and
J. Sander, Lof: identifying density- based local out-
liers, Proc. of the ACM SIGMOD International Con-
ference on Management of Data, vol. 29, pp. 93—
104, 2000.

[15] H. Izakian and W. Pedrycz, Anomaly detection in
time series data using a fuzzy c-means clustering,
Proc. of IFSA World Congress and NAFIPS Annual
Meeting, pp. 1513-1518, 2013.

[16] F. de Morsier, D. Tuia, M. Borgeaud, V. Gass, and
J.-P. Thiran, Cluster validity measure and merging
system for hierarchical clustering considering out-
liers, Pattern Recognition, vol. 48, no. 4, pp. 1478-
1489, 2015.

[17] B. Scholkopf, A. J. Smola, R. C. Williamson, and
P. L. Bartlett, New support vector algorithms, Neural
Computation, vol. 12, no. 5, pp. 1207-1245, 2000.

[18] B. Scholkopf, J. C. Platt, J. C. Shawe-Taylor,
A. J. Smola, and R. C. Williamson, Estimating the

support of a high-dimensional distribution, Neural
Computation, vol. 13, no. 7, pp. 1443-1471, 2001.

[19] C. Gautam, R. Balaji, S. K., A. Tiwari, and
K. Ahuja, Localized multiple kernel learning
for anomaly detection: One-class classification,
Knowledge-Based Systems, vol. 165, pp. 241-252,
2019.

[20] C. Desir, S. Bernard, C. Petitjean, and L. Heutte,
One class random forests, Pattern Recognition,
vol. 46, no. 12, pp. 3490-3506, 2013.

[21] D. M. J. Tax and R. P. W. Duin, Combining one-
class classifiers, Proc. of Multiple Classifier Sys-
tems: Second International Workshop, pp. 299-308,
2001.

[22] W. Homenda, A. Jastrzebska, and W. Pedrycz, Re-
jecting foreign elements in pattern recognition prob-
lem. reinforced training of rejection level, Proc. of
the 7th International Conference on Agents and Ar-
tificial Intelligence, pp. 90-99, 2015.

[23] Y. Shiraishia and K. Fukumizu, Statistical ap-
proaches to combining binary classifiers for multi-

class classification, Neurocomputing, vol. 74, pp.
680-688, 2011.

[24] M. Galar, A. Fernandez, E. Barrenechea,
H. Bustince, and F. Herrera, An overview of
ensemble methods for binary classifiers in multi-
class problems: Experimental study on one-vs-one
and one-vs-all schemes, Pattern Recognition, vol. 8,
no. 44, pp. 1761-1776, 2011.

[25] Y. LeCun, C. Cortes, and C. J. Burges,
The mnist database of handwritten digits,
http://yann.lecun.com/exdb/mnist.

[26] T. E. de Campos, B. R. Babu, and M. Varma,
Character recognition in natural images, in
Proc. of the International Conference on Com-
puter Vision Theory and Applications, 2009.
[Online]. Available: https://www.microsoft.com/en-
us/research/publication/character-recognition-in-
natural-images/

[27] L. Breiman, Random forests, Machine Learning,
vol. 1, no. 45, pp. 5-32, 2001.



94 Wiadystaw Homenda, Agnieszka Jastrzgbska, Witold Pedrycz, Fusheng Yu

Wiadystaw Homenda received the
M.Sc. in applied mathematics and
Ph.D. in computer science degrees
from Warsaw University of Technol-
ogy, Warsaw, Poland, and the D.Sc.
degree and Professor title in computer
science from the Systems Research In-
stitute of Polish Academy of Sciences,
Poland. He has been with Warsaw Uni-
versity of Technology since graduation. He is currently Pro-
fessor with the Faculty of Mathematics and Information Sci-
ence, Warsaw University of Technology. He is also with the
Faculty of Economics and Informatics in Vilnius (Lithuania)
of the University of Bialystok. He undertook organisation of
graduate studies in CICESE, Ensenada, Mexico and in Facul-
ty of Mathematics and Information Science, Warsaw, Poland.

He is the author of four books, more than 130 research ar-
ticles and music processing technologies. His main research
interests are in theoretical foundations of computer science
and intelligent computing technologies, specifically in the ar-
eas of man-machine communication and human-centric com-
puting. He is also active in such areas as fuzzy modeling and
granular computing, knowledge discovery and data mining.
He currently serves as an Associate Editor of Information
Sciences and is a member of several editorial boards of other
international journals.

Agnieszka Jastrzebska received the
B.Sc. degree in information technol-
ogy from the University of Derby,
Derby, UK in 2009 and the M.Sc. Eng.
degree in computer engineering from
the Rzeszow University of Technolo-
gy, Rzeszow, Poland in 2010 and M.A.
in economics from the University of
Rzeszow, Rzeszow, Poland in 2011.
She received the Ph.D. degree from the Warsaw University of
Technology, Warsaw, Poland in 2016.

From 2011 to 2017, she was a Research and Teaching As-
sistant with the Faculty of Mathematics and Information Sci-
ence, Warsaw University of Technology. Since 2017, she has
been an Assistant Professor at the Faculty of Mathematics
and Information Science, Warsaw University of Technology.
Her research interests include machine learning, computa-
tional intelligence, and fuzzy modelling.

Witold Pedrycz (IEEE Fellow, 1998)
is Professor and Canada Research
Chair (CRC) in Computational Intel-
ligence in the Department of Electrical
and Computer Engineering, Univer-
sity of Alberta, Edmonton, Canada.
He is also with the Systems Research
Institute of the Polish Academy of Sci-
ences, Warsaw, Poland. In 2009 Dr.

Pedrycz was elected a foreign member of the Polish Academy
of Sciences. In 2012 he was elected a Fellow of the Royal
Society of Canada. In 2007 he received a prestigious Norbert
Wiener award from the IEEE Systems, Man, and Cybernetics
Society. He is a recipient of the IEEE Canada Computer En-
gineering Medal, a Cajastur Prize for Soft Computing from
the European Centre for Soft Computing, a Killam Prize, a
Fuzzy Pioneer Award from the IEEE Computational Intelli-
gence Society, and 2019 Meritorious Service Award from the
IEEE Systems Man and Cybernetics Society.

His main research directions involve computational intel-
ligence, fuzzy modeling and granular computing, knowledge
discovery and data science, pattern recognition, data science,
knowledge-based neural networks, and control engineering.
He has published numerous papers in these areas; the cur-
rent h-index is 111 (Google Scholar) and 82 on the list top-h
scientists for computer science and electronics http:/www.
guide2research.com/scientists/. He is also an author of 21 re-
search monographs and edited volumes covering various as-
pects of Computational Intelligence, Data Mining, and Soft-
ware Engineering.

Dr. Pedrycz is vigorously involved in editorial activities.
He is an Editor-in-Chief of Information Sciences, Editor-in-
Chief of WIREs Data Mining and Knowledge Discovery
(Wiley), and Co-editor-in-Chief of Int. J. of Granular Com-
puting (Springer) and J. of Data Information and Manage-
ment (Springer). He serves on an Advisory Board of IEEE
Transactions on Fuzzy Systems and is a member of a number
of editorial boards of international journals.

Dr. Fusheng Yu is a professor in the
School of Mathematics Sciences, Bei-
jing Normal University, Beijing, Chi-
na. He received the M.S. degree and
Ph.D. degree in Applied Mathematics
from Beijing Normal University. From
: 2002 to 2004, he was a visiting scholar

with the Department of Electrical and

Computer Engineering, University of
Alberta, Edmonton, Alberta, Canada.

He is pursuing the research in computational intelligence,
granular computing, fuzzy systems and fuzzy modeling,
knowledge discovery and data mining, knowledge represen-
tation and fault diagnosis expert systems. He has presided
over or participated in more than 10 projects. He has pub-
lished more than 100 research papers. He (once) served as
a member of the editorial committees of some journals, a
member of the procedure committees or a chairman of the
regional organization committee of several international con-
ferences. He is vice chairman of the professional committee
of fuzzy information and engineering branch of China opera-
tions research association, member of the special committee
of non-classical logic and calculation of China logic society,
and member of the professional committee of risk analysis of
China disaster prevention association.



