PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Zirconium silicates in a peralkaline granite: a record of the interplay of magmatic and hydrothermal processes (Ilímaussaq complex, Greenland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Compositional and textural data are presented for zircon, secondary Zr-silicates, catapleiite and elpidite in a peralkaline granite from the Ilímaussaq complex, south Greenland. The zircon is essentially stoichiometric, with (Zr + Hf + Si) = 1.96–1.98 a.p.f.u. The secondary Zr-silicates show a wide range of Zr/Si atomic ratios (0.13–0.79). The catapleiite varies from close to stoichiometric to a Na-depleted type showing cation deficiency (5.2–5.8 a.p.f.u.). Elpidite shows similar variations (7.2–9.0 a.p.f.u.). Textural relationships between the Zr phases are interpreted to show that magmatic zircon interacted with hydrous fluids exsolved from the magma to form the secondary Zr-silicates. Formation of catapleiite was late-magmatic, in equilibrium with a Na-Si-bearing fluid. This was followed by the crystallization of elpidite, the fluid having a different Na/Si ratio. Both catapleiite and elpidite experienced Na-loss during late-stage hydrothermal alteration.
Rocznik
Strony
235--245
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Department of Geochemistry, Mineralogy and Petrology, Faculty of Geology, University of Warsaw, ul. Żwirki i Wigury 93, 02-089 Warsaw, Poland
  • Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Warsaw, ul. Twarda 51/55, 00-818 Warsaw, Poland.
  • Department of Geochemistry, Mineralogy and Petrology, Faculty of Geology, University of Warsaw, ul. Żwirki i Wigury 93, 02-089 Warsaw, Poland
  • Department of Geochemistry, Mineralogy and Petrology, Faculty of Geology, University of Warsaw, ul. Żwirki i Wigury 93, 02-089 Warsaw, Poland
  • Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
  • 11142 Forest Edge Drive, Reston, VA 20190, USA
  • Department of Geochemistry, Mineralogy and Petrology, Faculty of Geology, University of Warsaw, ul. Żwirki i Wigury 93, 02-089 Warsaw, Poland
  • Grant Institute, University of Edinburgh, James Hutton Rd., Edinburgh EH9 3FE, UK
Bibliografia
  • 1. Andreeva, I.A. 2016. Genesis and mechanisms of formation of rare-metal peralkaline granites of the Khaldzan Buregtey massif, Mongolia: evidence from melt inclusions. Petrology, 24, 462–476.
  • 2. Borst, A.M., Friis, H., Andersen, T, Nielsen, T.F.D., Wright, T.E. and Smit, M.A. 2016. Zirconosilicates in the kakortokites of the Ilímaussaq complex, South Greenland: Implications for fluid evolution and high-field-strength and rare- earth mineralization in agpaitic systems. Mineralogical Magazine, 80, 5–30.
  • 3. Di Carlo, I., Rotolo, S.G., Scaillet, B., Buccheri, V. and Pichavant, M. 2010. Phase equilibrium constraints on pre-eruptive conditions of recent felsic explosive volcanism at Pantelleria Island, Italy. Journal of Petrology, 51, 2245–2276.
  • 4. Estrade, G., Salvi, S. and Béziat, D. 2018. Crystallization and destabilization of eudialyte-group minerals in peralkaline granite and pegmatite: a case study from the Ambohimirahavavy complex, Madagascar. Mineralogical Magazine, 82, 375–399.
  • 5. Gerasimovskiy, V.I., Nesmeyanova, L.I., Kakhana, M.M. and Khazizova, V.D. 1972. Trends in the Zr and Hf distributions for lavas of the East African Rift zones. Geochemistry, 12, 1078–1086.
  • 6. Hamilton, E.I. 1964. The geochemistry of the northern part of the Ilímaussaq intrusion, S.W. Greenland. Grønlands Geologiske Undersøgelse Bulletin, 42, 104 pp.
  • 7. Hoskin, P.W.O. 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69, 637–648.
  • 8. Hoskin, P.W.O. and Schaltegger, U. 2005. The composition of zircon and igneous and metamorphic petrogenesis. In: J.M. Hanchar and P.W.O. Hoskin (Eds), Zircon. Reviews in Mineralogy and Geochemistry, 53, 2–62.
  • 9. Jacobsen, M.I., Reeve, J., Koepke, S. and Perera, N. 2007. Pegmatite mineralogy of Western Australia. Mineral Records, 38, 319.
  • 10. Karup-Møller, S., Rose-Hansen, J. and Sørensen, H. 2010. Eudialyte decomposition minerals with new hitherto undescribed phases from the Ilímaussaq complex, South Greenland. Bulletin of the Geological Society of Denmark, 58, 75–88.
  • 11. Kempe, U., Möckel, R., Graupner, T., Kynicky, J. and Dombon, E. 2015. The genesis of Zr-Nb-REE mineralisation at Khalzan Buregte (Western Mongolia) reconsidered. Ore Geology Reviews, 64, 602–625.
  • 12. Konnerup-Madsen, J. and Rose-Hansen, J. 1984. Composition and significance of fluid inclusions in the Ilímaussaq peralkaline granite, South Greenland. Bulletin de Minéralogie, 107, 317–326.
  • 13. Krumrei, T.V., Villa, I.M., Marks, M. and Markl, G. 2006. A40Ar/39Ar and U/Pb isotopic study of the Ilímaussaq complex, South Greenland: implications for the 40K decay constant and for the duration of magmatic activity in a peralkaline complex. Chemical Geology, 227, 258–273.
  • 14. Kudryashov, N.M., Skublov, S.G., Galankina, O.L., Udoratina, O.V. and Voloshin A.V. 2020. Abnormally high-hafnium zircon from rare-metal pegmatites of the Vasin-Mylk deposit (the northeastern part of the Kola Peninsula). Geochemistry, 80, 125489. https://doi.org/10.1016/j.geoch.2018.12.001.
  • 15. Kynický, J., Chakmouradian, A.R., Xu, C., Krmicek, L. and Galiova, M. 2011. Distribution and evolution of zirconium mineralization in peralkaline granites and associated pegmatites of the Khan Bogd complex, southern Mongolia. The Canadian Mineralogist, 49, 947–965.
  • 16. Macdonald, R. 1974. Nomenclature and petrochemistry of the peralkaline oversaturated volcanic rocks. Bulletin Volcanologique, 38, 498–516.
  • 17. Marks, M. A.W. and Markl, G. 2015. The Ilímaussaq Alkaline Complex, South Greenland. In: B. Chalier, O. Namur, R. Latypov and C. Tegner (Eds), Silicate Liquid immiscibility in Layered Intrusions, 649–691, Springer Geology; Dordrecht.
  • 18. Merlet, C. 1994. An accurate computer correction program for quantitative electron probe microanalysis. Microchimica Acta, 114/115, 363–376.
  • 19. Neves, J.C., Nunes, J.L. and Sahama, T.G. 1974. High hafnium members of the zircon-hafnon series from the granite pegmatites of Zambezia, Mozambique. Contributions to Mineralogy and Petrology, 48, 73–80.
  • 20. Salvi, S. and Williams-Jones, A.E. 1995. Zirconosilicate phase relations in the Strange Lake (Lac Brisson) pluton, Quebec Labrador, Canada. American Mineralogist, 80, 1031–1040.
  • 21. Scaillet, B. and Macdonald, R. 2003. Experimental constraints on the relationships between peralkaline rhyolites of the Kenya Rift Valley. Journal of Petrology, 44, 1867–1894.
  • 22. Schaltegger, U. 2007. Hydrothermal zircon. Elements, 3 (1), 51, 79.
  • 23. Smith, P.E., Tatsumoto, M. and Farquhar, R. 1987. Zircon Lu-Hf systematics and evolution of the Archean crust in the southern Superior Province, Canada. Contributions to Mineralogy and Petrology, 97, 93–104.
  • 24. Sørensen, H. 2006. The Ilímaussaq alkaline complex, South Greenland. An overview of 200 years of research and an outlook. Geoscience, 45, 1–70.
  • 25. Sørensen, H., Bohse, H. and Bailey, J.C. 2006. The origin and mode of emplacement of lujavrites in the Ilímaussaq alkaline complex, South Greenland. Lithos, 91, 286–300.
  • 26. Steenfelt, A. 1981. Field relations in the roof zone of the Ilímaussaq intrusion with special reference to the position of the alkali acid rocks. Rapport Grønlands Geologiske Undersøgelse, 103, 43–52.
  • 27. Sun, S.S. and McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders and M.J. Norry (Eds), Magmatism in the Ocean Basins. Special Publication of the Geological Society, 42, 313–345.
  • 28. Upton, B.G.J. 2013. Tectono-magmatic evolution of the younger Gardar southern rift, South Greenland. Geological Survey of Denmark and Greenland Bulletin, 29, 124 pp.
  • 29. Wang, X., Griffin, W. L. and Chen, J. 2010. Hf contents and Zr/Hf ratios in granitic zircons. Geochemical Journal, 44, 65–72.
  • 30. Yin, R., Wang, R.C., Zhang, A.C., Hu, H., Zhu, J.C., Rao, C. and Zhang, H. 2013. Extreme fractionation from zircon to hafnon in the Koktokay No. 1 granitic pegmatite, Altai, northwestern China. American Mineralogist, 98, 1714–1724.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f577c941-9c70-4f4b-b36b-a3b329e65f5b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.