Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Thermal properties of Cu–Zn partially substituted Bi1.8Sr2Ca2Cu3.2-xZnx10+δ (x = 0, 0.1 and 0.5) glass-ceramic systems have been investigated with the help of a differential thermal analyzer (DTA) by using Johnson-Mehl-Avrami-Kolmogorov (JMAK) approximation. Non-isothermal crystallization kinetics of the samples has been tested. The calculated values of activation energy of crystallization (E) and Avrami parameter (n) ranged between 306.1 and 338.3 kJ.mol-1 and 1.29 and 3.59, respectively. Crystallization kinetics was compared following the partial substitution, before and after Zn doping of the sample. In addition, by using a scanning electron microscope (SEM) and X-ray powder diffractometer (XRD), structural properties of Zn doped BSCCO glass-ceramic samples were determined. Surface morphology of the samples was studied by SEM measurements. Lattice parameters and volume of the samples were calculated from the XRD measurements.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
25--32
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
- Superconductivity and Thermal Analysis Laboratory, Department of Physics, Faculty of Sciences, Gazi University, 06531 Ankara, Turkey
autor
- Superconductivity and Thermal Analysis Laboratory, Department of Physics, Faculty of Sciences, Gazi University, 06531 Ankara, Turkey
autor
- Superconductivity and Thermal Analysis Laboratory, Department of Physics, Faculty of Sciences, Gazi University, 06531 Ankara, Turkey
autor
- Department of Physics, Faculty of Arts and Sciences, Kastamonu University, 37100 Kastamonu, Turkey
- Research and Application Center, Kastamonu University, 37100 Kastamonu, Turkey
autor
- Department of Physics, Faculty of Arts and Sciences, Kastamonu University, 37100 Kastamonu, Turkey
Bibliografia
- 1. Askeland D.R., Fulay P.P., The Science and Engineering of Materials, Van Nastrand Reinhold Co. Ltd., Hong Kong, 1988.
- 2. Omar A.A., El-Shennawi A.W.A., El Ghannam A.R., J. Mater. Sci., 26 (1991), 6049.
- 3. Mcmillan P.W., Non-Metallic Solids, Glass-Ceramics, Academic Press, London, 1979.
- 4. Holland W., Beall G., Glass-Ceramic Technology, The American Ceramic Society, Ohio, 2002.
- 5. Arslan A., Koralay H., Çavdar S., Günen A., J. Non-Cryst. Solids, 358 (2012), 1190.
- 6. Çavdar S., Koralay H., Altindal S., J. Low Temp. Phys., 164 (2011), 102.
- 7. Koralay H., Arslan A., Cavdar S., Ozturk O., Asikuzun E., Gunen A., Tasci A.T., J. Mater. Sci. Mater. Electron., 24 (2013), 4270.
- 8. Höland W., Rheinberger V., Apel E., Hoen C., Höland M., Dommann A., Obrecht M., Mauth C., Graf-Hausner U., J. Mater. Sci. Mater. Med., 17 (2006), 1037.
- 9. Sanghera J., Villalobos S.B.G., Kim W., Frantz J., Shaw B., Sadowski B., Miklos R., Baker C., Hunt M., Aggarwal I., Kung F., Reicher D., Peplinski S., Ogloza A., Langston P., Lamar C., Varmette P., Dubinskiy M., Desandre L., Opt. Mater., 33 (2011), 511.
- 10. Kayed T.S., Calinli N., Aksu E., Koralay H., Günen A., Ercan İ., Aktürk S., C¸ Avdar S., Cryst. Res. Technol., 39 (2004), 1063.
- 11. Ozturk O., Asikuzun E., Coskunyurek M., Soylu N., Hancerliogullari A., Varilci A., Terzioglu C., J. Mater. Sci.-Mater. El., 25 (2014), 444.
- 12. Boussouf N., Mosbah M.-F., J. Supercond. Nov. Magn., 26 (2013), 2891.
- 13. Ozturk O., J. Mater. Sci.-Mater. El., 23 (2012), 1235.
- 14. Mohamed S.B., Halim S.A., Azhan H., Ieee T. Appl. Supercon., 11 (2001), 2864.
- 15. Aksan M.A., Yakinci M.E., Balci Y., J. Supercond. Nov. Magn., 15 (2002), 6.
- 16. Toplu A., Karaca İ., Kölemen U., Ceram. Int., 41 (2015), 953.
- 17. Johnson W.A., Mehl K.F., Trans. Am. Inst. Min. Met. Eng., 135 (1939), 419.
- 18. Avrami M.J., J. Chem. Phys., 7 (1939), 1103.
- 19. Avrami M.J., J. Chem. Phys., 8 (1940), 212.
- 20. Erofeev B.V., Mitskevich M., Zh. Fiz. Khim., 24 (1950), 1235.
- 21. Kolmogorov A.N., Izv. Akad. Nauk USSR Ser. Math. Tom., 1 (1937), 225.
- 22. Vá Squez J., Wagner P., Villares R., Jiménez G., J. Non-Cryst. Solids, 235 (1998), 548.
- 23. Gao Y.Q., Wang W., J. Non-Cryst. Solids, 81 (1986), 129.
- 24. Kissinger H.E., Anal. Chem., 29 (1957), 1702.
- 25. Ozawa T., Polymer, 12 (1971), 150.
- 26. Xie X., Gao H., J. Non-Cryst. Solids, 240 (1998), 166.
- 27. Yousef E., El-Adawy A., Makled M.H., Alsalami A.E., J. Mater. Sci., 45 (2010), 2930.
- 28. Vaish R., Varma K.B.R., J. Phys. D Appl. Phys., 42 (2009), 015409.
- 29. Losocka M., Mater. Sci. Eng., 23 (1976), 173.
- 30. Suzuki T., Yumoto K.I., Hasegawa M., Takei H., Jpn. J. Appl. Phys., 38 (1999), 2072.
- 31. Wong-Ng W., Freiman S.W., Superconducting Phase Formation In Bi(Pb)–Sr–Ca–Cu–O Glasses, World Scientific, London, 1997.
- 32. Koralay H., Cavdar S., Aksan M.A., Physica B, 405 (2010), 4801.
- 33. Matheis D.P., Misture S.T., Snyder R.L., Physica C, 207 (1993), 134.
- 34. Koralay H., Hicyilmaz O., Cavdar S., Asikuzun E., Tasci
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f571ebd5-d927-43f1-b3cf-573cf573447c