Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Aiming at the problems of low estimation accuracy and narrow application range of sensorless control caused by inverter nonlinearity and motor parameter error, this paper studies a sensorless control technology of permanent magnet synchronous motor based on an interactive multi-model extended Kalman filter algorithm to realize high-precision and high-performance sensorless control of a permanent-magnet synchronous motor. Firstly, considering the influence of inverter nonlinearity, the mathematical model of PMSM including inverter disturbance voltage is established. Secondly, an interactive multi-model extended Kalman filter observer is designed based on this model to achieve high-precision sensorless control of PMSM. Thirdly, the nonlinear disturbance voltage of the inverter is fed back to the control system for dead-time compensation, thus eliminating the voltage disturbance caused by the dead-time effect. Finally, simulation experiments and dual-motor towing experiments demonstrate the efficacy of the interactive multi-model extended Kalman filter sensorless control algorithm in mitigating the effects of dead time. The results indicate that the proposed algorithm exhibits high precision in speed and angle estimation, robust anti-disturbance capabilities, and excellent overall performance.
Czasopismo
Rocznik
Tom
Strony
1--18
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr., wzory
Twórcy
autor
- Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
autor
- Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
autor
- Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
autor
- Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
Bibliografia
- [1] Zhu, J., Nan, H., & Guo, X. (2024). Design and analysis of a novel three-segment Halbach permanent magnet array coreless AFPMG. Journal of Jiangsu University (Natural Science Edition), 45(1), 105-111. https://doi.org/10.3969/j.issn.1671-7775.2024.01.015 (in Chinese)
- [2] Boyar, A., Kabalci, E., & Kabalci, Y. (2024). Sensorless speed controller of an induction motor with MRAS-based model predictive control. Computers and Electrical Engineering, 118, 109350. https://doi.org/10.1016/j.compeleceng.2024.109350
- [3] Li, J., Feng, B., & Li, S. (2023). Speed control of permanent magnet synchronous motor based on RESO and composite sliding mode. Journal of Jiangsu University (Natural Science Edition), 44(3), 330-336. https://doi.org/10.3969/j.issn.1671-7775.2023.03.012 (in Chinese)
- [4] Yang, M., Li, S., & Li, Z. (2022). Active disturbance rejection controller of direct torque for permanent magnet synchronous motor based on super-twisting sliding mode. Journal of Jiangsu University (Natural Science Edition), 43(6), 680-684.
- [5] Sun, L. (2022). Low speed sensorless control method of brushless DC motor based on pulse high frequency voltage injection. Alexandria Engineering Journal, 61(8), 6457-6463. https://doi.org/10.1016/j.aej.2021.12.005
- [6] Wang, G., Valla, M., & Solsona, J. (2019). Position sensorless permanent magnet synchronous machine drives - A review. IEEE Transactions on Industrial Electronics, 67(7), 5830-5842. https://doi.org/10.1109/TIE.2019.2955409
- [7] Sun, X., Zhang, Y., Tian, X., Cao, J., & Zhu, J. (2021). Speed sensorless control for IPMSMs using a modified MRAS with gray wolf optimization algorithm. IEEE Transactions on Transportation Electrification, 8(1), 1326-1337. https://doi.org/10.1109/TTE.2021.3093580
- [8] Sun, X., Cai, F., Yang, Z., & Tian, X. (2022). Finite position control of interior permanent magnet synchronous motors at low speed. IEEE Transactions on Power Electronics, 37(7), 7729-7738. https://doi.org/10.1109/TPEL.2022.3146841
- [9] Li, T., & Zhou, J. (2018). High-stability position-sensorless control method for brushless DC motors at low speed. IEEE Transactions on Power Electronics, 34(5), 4895-4903. https://doi.org/10.1109/TPEL.2018.2863735
- [10] Zhang, Z. (2022). Sensorless back EMF based control of synchronous PM and reluctance motor drives - A review. IEEE Transactions on Power Electronics, 37(9), 10290-10305. https://doi.org/10.1109/TPEL.2022.3162963
- [11] Marchesoni, M., Passalacqua, M., Vaccaro, L., Calvini, M., & Venturini, M. (2020). Performance improvement in a sensorless surface-mounted PMSM drive based on rotor flux observer. Control Engineering Practice, 96, 104276. https://doi.org/10.1016/j.conengprac.2019.104276
- [12] Boztas, G., & Aydogmus, O. (2022). Implementation of sensorless speed control of synchronous reluctance motor using extended Kalman filter. Engineering Science and Technology, an International Journal, 31, 101066. https://doi.org/10.1016/j.jestch.2021.09.012
- [13] Gamazo-Real, J.C., Martínez-Martínez, V., & Gomez-Gil, J. (2022). ANN-based position and speed sensorless estimation for BLDC motors. Measurement, 188, 110602. https://doi.org/10.1016/j.measurement.2021.110602
- [14] Zhang, W., Zhang, Z., Lu, J., Chen, T., & Li, Y. (2023). Back electromotive force-based discrete-time rotor position bias compensation method for permanent magnet synchronous motors. IEEE Transactions on Power Electronics, 38(10), 13030-13041. https://doi.org/10.1109/TPEL.2023.3298213
- [15] Ye, S. (2019). Design and performance analysis of an iterative flux sliding-mode observer for the sensorless control of PMSM drives. ISA Transactions, 94, 255-264. https://doi.org/10.1016/j.isatra.2019.04.009
- [16] Yang, Z., Ding, Q., Sun, X., Lu, C., & Zhu, H. (2022). Speed sensorless control of a bearingless induction motor based on sliding mode observer and phase-locked loop. ISA Transactions, 123, 346-356. https://doi.org/10.1016/j.isatra.2021.05.041
- [17] İnan, R., Aksoy, B., & Salman, O.K.M. (2023). Estimation performance of the novel hybrid estimator based on machine learning and extended Kalman filter proposed for speed-sensorless direct torque control of brushless direct current motor. Engineering Applications of Artificial Intelligence, 126, 107083. https://doi.org/10.1016/j.engappai.2023.107083
- [18] Lu, J., Hu, Y., Zhang, X., Wang, Z., Liu, J., & Gan, C. (2018). High-frequency voltage injection sensorless control technique for IPMSMs fed by a three-phase four-switch inverter with a single current sensor. IEEE/ASME Transactions on Mechatronics, 23(2), 758-768. https://doi.org/10.1109/TMECH.2018.2803772
- [19] Wang, Y., Xu, Y., & Zou, J. (2020). Online multiparameter identification method for sensorless control of SPMSM. IEEE Transactions on Power Electronics, 35(10), 10601-10613. https://doi.org/10.1109/TPEL.2020.2974870
- [20] Kivanc, O.C., Ozturk, S.B., & Toliyat, H.A. (2022). On-line dead time compensator for PMSM drive based on current observer. Engineering Science and Technology, an International Journal, 25, Article 100987. https://doi.org/10.1016/j.jestch.2021.04.006
- [21] Wang, Y., Xu, Y., & Zou, J. (2019). Sliding-mode sensorless control of PMSM with inverter nonlinearity compensation. IEEE Transactions on Power Electronics, 34(10), 10206-10220. https://doi.org/10.1109/TPEL.2018.2890564
Uwagi
This work was supported by the National Key R&D Program of China (Grant number 2023YFB4706900, 2021YFB2501700), the National Natural Science Foundation of China (Grant number 51705213) and the State Key Laboratory of Intelligent Green Vehicle and Mobility (Grant number KFY2409).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f570824a-054f-4606-a355-d59c6fbcc81d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.