PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Review of methods of designing and additive manufacturing of gears

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza metod projektowania oraz wytwarzania kół zębatych z wykorzystaniem technologii przyrostowych
Języki publikacji
EN
Abstrakty
EN
Additive manufacturing (AM) technology is one of the main components of the fourth industrial revolution known as Industry 4.0. Over the last decades, increase in the dynamics of the development of this technology manifests itself in the form of a wide spectrum of implementations of the methods in the production processes of many elements. This paper presents the latest achievements in the production of gears where the additive technologies have been applied with the use of polymers and metallic materials. The most frequently used methods in this field were indicated, as well as problems related to geometric accuracy or fatigue life of elements manufactured with the use of the methods mentioned. In addition, there were defined future directions of gear design, the implementation of which was possible thanks to the use of aM as well as the scope of research that should be undertaken in this area in the future.
PL
Technologia wytwarzania przyrostowego jest jednym z głównych składowych czwartej rewolucji przemysłowej określanej mianem Przemysł 4.0. W ciągu ostatnich kilkunastu lat, dynamiczny rozwój tej technologii przejawia się w formie szerokiego spektrum wdrożeń poszczególnych technik w procesy produkcyjne wielu części maszyn. W pracy przedstawiono ostatnie osiągnięcia z zakresu wytwarzania kół zębatych przy użyciu technik addytywnych z wykorzystaniem polimerów, jak i materiałów metalicznych. Wskazano techniki, najczęściej wykorzystywane w tym zakresie, a także problemy związane z dokładnością geometryczną, czy trwałością zmęczeniową elementów wytwarzanych z ich wykorzystaniem. Ponadto, określono przyszłe kierunki projektowania kół zębatych, których implementacja była możliwa dzięki wykorzystaniu AM, a także zakres badań, który w przyszłości powinien zostać podjęty w kolejnych pracach naukowych.
Rocznik
Strony
15--34
Opis fizyczny
Bibliogr. 77 poz., rys., tab.
Twórcy
  • Doctoral School of the Military University of Technology, 2B gen. S. Kaliskiego str., 00-908 Warszawa, Poland,
Bibliografia
  • [1] Jurga R., Machiny wojenne. Zapomniana technika wojskowa, Vesper, Warszawa 2011.
  • [2] Dudley D., The evolution of the gear art, american Gears Manufacturers Association, Washington 1969.
  • [3] Linke H., Börner J., Hess R., Cylindrical Gears, carl Hanser Verlag, Munich, German, 2016.
  • [4] Gupta K., Recent developments in additive manufacturing of gears: A review, Adv. Transdiscipl. Eng., 8, 2018, 131-136, DOI: 10.3233/978-1-61499-902-7-131.
  • [5] Feld M., Podstawy projektowania procesów technologicznych typowych częsci maszyn, Wydawnictwa Naukowo-Techniczne, Warszawa 2003.
  • [6] Milewski J.O., Additive Manufacturing of Metals, Springer, 2017, DOI: 10.1007/978-3-319-58205-4.
  • [7] Gibson I., Rosen D., Stucker B., Additive manufacturing technologies, second edition, Springer, 2015, DOI: 10.1007/978-1-4939-2113-3.
  • [8] Gebhardt a., Understanding Additive Manufacturing, Hanser Publisher, Munich, 2011.
  • [9] Pham D.T., Dimov T., Rapid prototyping and rapid tooling-the key enablers for rapid manufacturing, Proceedings of the Institution of Mechanical Engineers, 217, 1, 2003.
  • [10] Gurr M., Thomann Y., Nedelcu M., Kübler R., Könczöl L., Mülhaupt R., Novel acrylic nanocomposites containing in-situ formed calcium phosphate/layered silicate hybrid nanoparticles for photochemical rapid prototyping, rapid tooling and rapid manufacturing processes, Polymer (Guildf)., 51, 22, Oct. 2010, 5058-5070, DOI: 10.1016/j.polymer.2010.08.026.
  • [11] Levy G., Schindel R., Kruth J., Rapid Manufacturing and Rapid Tooling with Layer Manufacturing (LM) technologies, state of the art and future perspectives, CIRP Ann., 52, 2, 2003.
  • [12] Lengua C.A.G., History of Rapid Prototyping, [in:] Rapid Prototyping in Cardiac Disease: 3D Printing the Heart, ed. k. M. Farooqi, Springer International Publishing, 2017, 3-7.
  • [13] Kruth J. P., Material incress manufacturing by rapid prototyping techniques, Proc. 41th CIRP Gen. Assem., 40, 2, 1991, 603-614.
  • [14] Jiménez M., Romero L., Domínguez I.A., Espinosa M.D.M., Domínguez M., Additive Manufacturing Technologies: An Overview about 3D Printing Methods and Future Prospects, Complexity, 2019, DOI: 10.1155/2019/9656938.
  • [15] Chen L., He Y., Yang Y., Niu S., Ren H., The research status and development trend of additive manufacturing technology, Int. J. Adv. Manuf. Technol., 89, 9-12, 2017, 3651-3660, DOI: 10.1007/s00170-016-9335-4.
  • [16] Bidulsky R., Gobber F.S., Bidulska J., Ceroni M., Kvackaj T., Grande M.A., Coated Metal Powders for Laser Powder Bed Fusion ( L-PBF ) Processing : a Review, 2021, 1-23.
  • [17] Zhang Y. et al., Additive Manufacturing of Metallic Materials: A Review, J. Mater. Eng. Perform., vol. 27, no. 1, pp. 1-13, 2018, DOI: 10.1007/s11665-017-2747-y.
  • [18] Yakout M., Elbestawi M.A., Veldhuis S.C., A review of metal additive manufacturing technologies, Solid State Phenom., 278 SSP, 2018, 1-14, DOI: 10.4028/www.scientific.net/ssP.278.1.
  • [19] Goodridge R.D., Tuc C.J.K, Hague R.J.M., Laser sintering of polyamides and other polymers, Prog. Mater. Sci., 57, 2, 2012, 229-267, DOI: 10.1016/j.pmatsci.2011.04.001.
  • [20] Czelusniak T., Amorim F.L., Selective laser sintering of carbon fiber-reinforced PA12: Gaussian process modeling and stochastic optimization of process variables, Int. J. Adv. Manuf. Technol., 110, 7-8, 2020, 2049-2066, DOI: 10.1007/s00170-020-05993-5.
  • [21] Svetlizky D. et al., Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications, Mater. Today, vol. 49, no. October, 2021, 271-295, DOI: 10.1016/j.mattod.2021.03.020.
  • [22] Rodrigues T.A., Duarte V., Miranda R.M., Santo T.G.S, Oliveira J.P., Current status and perspectives on wire and arc additive manufacturing (WAAM), Materials (Basel), 12, 7, 2019, DOI: 10.3390/ma12071121.
  • [23] Hoefer K., Nitsche A., Abstoss K.G., Ertugrul G., Haelsig A., Mayr P., Multi-material Additive Manufacturing by 3D Plasma Metal Deposition for Graded Structures of Super Duplex Alloy 1.4410 and the Austenitic Corrosion Resistant Alloy 1.4404, Jom, 71, 4, 2019, 1554-1559, DOI: 10.1007/s11837-019-03356-4.
  • [24] Karczewski K., Pęska M., Ziętala M., Polański M., Fe-Al thin walls manufactured by Laser Engineered Net Shaping, J. Alloys Compd., 696, 2017, 1105-1112, DOI: 10.1016/j.jall-com.2016.12.034.
  • [25] Syed W.U.H., Pinkerton A.J., Liu Z., Li L., Single-step laser deposition of functionally graded coating by dual ‘wire-powder’ or ‘powder-powder’ feeding-A comparative study, Appl. Surf. Sci., 253, 19, 2007, 7926-7931, DOI: 10.1016/j.apsusc.2007.02.174.
  • [26] Syed W.U.H., Pinkerton A.J., Liu Z., Li L., Coincident wire and powder deposition by laser to form compositionally graded material, Surf. Coatings Technol., 201, 16-17, 2007, 7083-7091, DOI: 10.1016/j.surfcoat.2007.01.020.
  • [27] Bártolo P.J., Stereolithograph, Springer, Boston, Ma, 2011, https://doi.org/10.1007/978-0-387-92904-0.
  • [28] Yee D.W., Greer J.R., Three‐dimensional chemical reactors: in situ materials synthesis to advance vat photopolymerization, Polym. Int., 70, 7, 2021, 964-976.
  • [29] Friel R.J., Harris R.A., Ultrasonic additive manufacturing A hybrid production process for novel functional products, Procedia CIRP, 6, 1, 2013, 35-40, DOI: 10.1016/j.procir.2013.03.004.
  • [30] Shimizu S., Fujii H.T., Sato Y.S., Kokawa H., Sriraman M.R., Babu S.S., Mechanism of weld formation during very-high-power ultrasonic additive manufacturing of Al alloy 6061, Acta Mater., 74, 2014, 234-243, DOI: 10.1016/j.actamat.2014.04.043.
  • [31] Hehr A., Norfolk M., A comprehensive review of ultrasonic additive manufacturing, Rapid Prototyp. J., 26, 3, 2020, 445-458, DOI: 10.1108/RPJ-03-2019-0056.
  • [32] Bass L., Meisel N.A., Williams C.B., Exploring variability of orientation and aging effects in material properties of multi-material jetting parts, Rapid Prototyp. J., 22, 5, 2016, 826-834, DOI: 10.1108/RPJ-11-2015-0169.
  • [33] Gibson I., Rosen D.W., Stucker B., Additive manufacturing technologies: Rapid prototyping to direct digital manufacturing, springer us, 2010.
  • [34] Hyatt G., Piber M., Chaphalkar N., Kleinhenz O., Mori M., A review of new strategies for gear production, Procedia CIRP, 14, 2014, 72-76, DOI: 10.1016/j.procir.2014.03.034.
  • [35] Gołebski R., Boral P., Study of machining of gears with regular and modified outline using cnc machine tools, Materials (Basel)., 14, 11, 2021, DOI: 10.3390/ma14112913.
  • [36] Skoczylas L., Tomczewski L., The application of universal CNC machine tool for spur gears manufacturing, Adv. Sci. Technol. - Res. J., 7, 19, 2013, 75-78, DOI: 10.5604/20804075.1062378.
  • [37] Skoczylas L., Artur B., Możliwość szlifowania zwojów ślimaka ściernią krążkową na obrabiarkach uniwersalnych, [in:] koła zębate. Projektowanie - wytwarzanie - pomiary - eksploatacja, 2017, 42-47.
  • [38] Gupta K., Jain N.K., Laubscher R., Advanced gear manufacturing and finishing - classical and modern processes, Academic Press - Elsevier, 2017.
  • [39] Deáky B., Udroiu R., Lupulescu N., Bâlc N., Cylindrical Gear Rapid Manufacturing Study (Part I), Mod. Technol. Qual. Innov. - New face TMCR, April, 2011, 76-79, DOI: 10.13140/2.1.1379.9044.
  • [40] Budzik G., The Use of the Rapid Prototyping Method for the Manufacture and Examination of Gear Wheels, Adv. Appl. Rapid Prototyp. Technol. Mod. Eng., March, 2011, DOI: 10.5772/22848.
  • [41] Davis J. R., Gear materials, properties and manufacture, ASM International, Ohio, 2005.
  • [42] Mechanical engineering, Rapid prototyping includes moving parts, 114, 4, New York, , 1992, 12.
  • [43] Vasilescu M.D., Constructiv and technological consideration on the generation of gear made by the DLP 3D-printed methode, Mater. Plast., 56, 2, 2019, 440–444, DOI: 10.37358/mp.19.2.5203.
  • [44] García-García R., González-Palacios M.A., Method for the geometric modeling and rapid prototyping of involute bevel gears, Int. J. Adv. Manuf. Technol., 98, 1-4, 2018, 645-656, DOI: 10.1007/s00170-018-2246-9.
  • [45] Skawiński P., Siemiński P., Błazucki P., Applications of additive manufacturing (FDM method) in the manufacturing of gear, Mechanik, 12, 2015, 976/173-976/179, DOI: 10.17814/mechanik.2015.12.582.
  • [46] Vasilescu M.D., Fleser T., Influence of technological parametrs on the dimension of threaded parts generated with PLA matherial by FDM 3D printing, Mater. Plast., 55, 2018, 718-722, DOI: 10.37358/mp.18.4.5108.
  • [47] Zumofen L., Kirchheim A., Feasibility Investigation of Gears Manufactured by Fused Filament Fabrication, Ind. Addit. Manuf., no. September, 2021, DOI: 10.1007/978-3-030-54334-1.
  • [48] Budzik G., Kozik B., Cieplak M., A universal stand for air gear test made in rapid prototyping process, Diagnostyka, 16, 2, 2015, 27-30.
  • [49] Budzik G., Markowski T., Sobolak M., Analysis of Surface Roughness of Transmission Gear, J. KONES Powertrain Transp., 15, 2, 2008.
  • [50] J. Kim, B.S. Kang, Enhancing structural performance of short fiber reinforced objects through customized tool-path, Appl. Sci., 10, 22, 2020, 1–19, DOI: 10.3390/app10228168.
  • [51] Mitrovic R. et al., Determination of optimal parameters for rapid prototyping of the involute gears, IOP Conf. Ser. Mater. Sci. Eng., 393, 1, 2018, DOI: 10.1088/1757-899X/393/1/012105.
  • [52] Magniszewski M., Budzik G., Dziubek T., Sobolewski B., Określenie dokładności prototypów kół zębatych wytwarzanych addytywną metodą SLS, [in:] Koła zębate. Projektowanie - wytwarzanie - pomiary - eksploatacja, 2017, 58-63.
  • [53] Dziubek T., Application of coordination measuring methods for assessing the performance properties of polymer gears, Polimery, 63, 1, 2018, 49-52, DOI: 10.14314/polimery.2018.1.8.
  • [54] Magniszewski M., Budzik G., Dziubek T., Sobolewski B., Wpływ procesu piaskowania na dokładność kształtowo wymiarową prototypów kół zębatych wytworzonych metodą SLS, [in] Koła zębate. Projektowanie - wytwarzanie - pomiary - eksploatacja, 2017, 48–52.
  • [55] Pisula J., Budzik G., Turek P., Cieplak M., An analysis of polymer gear wear in a spur gear train made using fdm and fff methods based on tooth surface topography assessment, Polymers (Basel)., 13, 10, 2021, DOI: 10.3390/polym13101649.
  • [56] Al Rashid A., Ahmed W., Khalid M.Y., Koç M., Vat photopolymerization of polymers and polymer composites: Processes and applications, Addit. Manuf., 47, no. July, 2021, 102279, DOI:10.1016/j.addma.2021.102279.
  • [57] Sachdeva A., Singh S., Sharma V.S., Investigating surface roughness of parts produced by SLS process, Int. J. Adv. Manuf. Technol., 64, 9-12, 2013, 1505-1516, DOI: 10.1007/s00170-012-4118-z.
  • [58] Marciniec A., Budzik G., Ocena dokładności prototypów stożkowych kół zębatych z zastosowaniem CMM, Mechanika, z. 7, 2010.
  • [59] Pisula J., Budzik G., Cieplak M., Ocena dokładności geometrycznej kół zębatych wykonanych metodami addytywnymi z wykorzystaniem współrzędnościowej maszyny pomiarowej, Przegląd Mech., 2, 21-24, 2019.
  • [60] Dennig H.J., Monn S., Vodermayer A., Thermoplastic high performance composite gears, Int. Conf. Gears 2019, no. January 2019, 2019, 1279-1290, DOI: 10.51202/9783181023556-1279.
  • [61] Zhang Y., Purssel C.L, Ma K.O, Leigh S., A physical investigation of wear and thermal characteristics of 3D printed nylon spur gears, Tribol. Int., 141, no. September 2019, 2020, 105953, DOI: 10.1016/j.triboint.2019.105953.
  • [62] Rogers K., Additive Manufacturing Technologies for Gears, American Gear Manufacturers Association, 2020.
  • [63] Rokicki A.R.P., Kozik B., Budzik G., Dziubek T., Bernaczek J., Przeszlowski Ł., Markowska O., Sobolewski B., Manufacturing of aircraft engine transmission gear with SLS ( DMLS ) method, Aircr. Eng. Aerosp. Technol. An Int. J., 3, no. August 2015, 2016, 397-403, DOI: 10.1108/aeaT-05-2015-0137.
  • [64] J.M. Pisula, G. Budzik, Ł. Przeszłowski, An analysis of the surface geometric structure and geometric accuracy of cylindrical gear teeth manufactured with the direct metal laser sintering (DMLS) method, J. Mech. Eng., 65, 2, 2019, 78-86, DOI: 10.5545/sv-jme.2018.5614.
  • [65] Concli F. et al., Bending fatigue behavior of 17-4 ph gears produced by additive manufacturing, Appl. Sci., 11, 7, 2021, DOI: 10.3390/app11073019.
  • [66] Han S.W., Ji W.J., Moon Y.H., Fabrication of gear having functionally graded properties by direct laser melting process, Adv. Mech. Eng., 2014, DOI: 10.1155/2014/618464.
  • [67] Lin C., Fan Y., Zhang Z., Fu G., Cao X., Additive manufacturing with secondary processing of curve-face gears, Int. J. Adv. Manuf. Technol., 86, 1-4, 2016, 9-20, DOI: 10.1007/s00170-015-8118-7.
  • [68] Tezel T., Topal E.S., Kovan V., Characterising the wear behaviour of DMLS-manufactured gears under certain operating conditions, Wear, vol. 440-441, no. July, 2019, 203106, DOI: 10.1016/j.wear.2019.203106.
  • [69] Ramadani R., Belsak A., Kegl M., Predan J., Pehan S., Topology optimization based design of lightweight and low vibration gear bodies, Int. J. Simul. Model., 17, 1, 2018, 92-104, DOI: 10.2507/IJsIMM17(1)419.
  • [70] Bouquet J., Hensgen L., Klink A., Jacobs T., Klocke F., Lauwers B., Fast production of gear prototypes - A comparison of technologies, Procedia CIRP, 14, 2014, 77-82, DOI: 10.1016/j.procir.2014.03.066.
  • [71] Tezel T., Topal E.S., Kovan V., Failure analysis of 3D-printed steel gears, Eng. Fail. Anal., 110, no. January, 2020, 104411, DOI: 10.1016/j.engfailanal.2020.104411.
  • [72] Kamps T., Leichtbau von Stirnzahnrädern aus Edelstahl mittels Laserstrahlschmelzen, 2018.
  • [73] Kamps T., Gear Wheel Manufacture Via Selective Laser Melting, [in:] RAPID Conf. Expo., Detroit, 2014.
  • [74] Ramadani R. et al., Topology optimization and additive manufacturing in producing lightweight and low vibration gear body, Int. J. Adv. Manuf. Technol., 113, 11-12, 2021, 3389-3399, DOI: 10.1007/s00170-021-06841-w.
  • [75] Siglmüller F. et al., Efficiency of additive manufactured gears with conformal cooling, 21st Tae Int. colloq. Tribol., no. June, 2018.
  • [76] Dennig H.J., Zumofen L., Stierli D., Kirchheim A., Winterberg S., Increasing the safety against scuffing of additive manufactured gear wheels by internal cooling channels, Forsch. Im Ingenieurwesen/Engineering Res., 2021, DOI: 10.1007/s10010-021-00515-5.
  • [77] Schmitt M. et al., Laser-based powder bed fusion of 16MnCr5 and resulting material properties, Addit. Manuf., 35, June, 2020, 101372, DOI: 10.1016/j.addma.2020.101372.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5701fac-c3ce-4930-9b74-df7d71c52706
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.