PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulating Large-Scale Topographic Terrain Features with Reservoirs and Flowing Water

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The flow and accumulation of water are essential aspects when it comes to generating realistic terrains. In this article, we have set out to create a method for generating the distribution and levels of water in a virtual world. Our method fully simulates the water entering and exiting the system through rainfall, perspiration, and flowing out of the domain. Also, it simulates the phenomena of flow and accumulation in an iterative process. According to our observations, only allowing the user to influence the terrain and then simulating the placement of water bodies provides a natural result while preserving a high level of control.
Rocznik
Tom
Strony
385--392
Opis fizyczny
Bibliogr. 16 poz., wz., wykr., il.
Twórcy
  • Warsaw University of Technology, Faculty of Mathematics and Information Science ul. Koszykowa 75, 00-662 Warszawa, Poland
  • Warsaw University of Technology, Faculty of Mathematics and Information Science ul. Koszykowa 75, 00-662 Warszawa, Poland
  • Warsaw University of Technology, Faculty of Mathematics and Information Science ul. Koszykowa 75, 00-662 Warszawa, Poland
  • Warsaw University of Technology, Faculty of Mathematics and Information Science ul. Koszykowa 75, 00-662 Warszawa, Poland
Bibliografia
  • 1. J.-D. Champagnac, P. Molnar, C. Sue, and F. Herman, “Tectonics, climate, and mountain topography,” Journal of Geophysical Research: Solid Earth, vol. 117, no. B2, 2012. http://dx.doi.org/10.1029/2011JB008348
  • 2. R. M. Smelik, T. Tutenel, R. Bidarra, and B. Benes, “A survey on procedural modelling for virtual worlds,” Computer Graphics Forum, vol. 33, no. 6, pp. 31–50, 2014. http://dx.doi.org/10.1111/cgf.12276
  • 3. J.-D. Génevaux, E. Galin, A. Peytavie, E. Guérin, C. Briquet, F. Grosbellet, and B. Benes, “Terrain modelling from feature primitives,” Computer Graphics Forum, vol. 34, no. 6, pp. 198–210, 2015. http://dx.doi.org/10.1111/cgf.12530
  • 4. M. Luckner and K. Rzążewska, “3D model reconstruction and evaluation using a collection of points extracted from the series of photographs,” in Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, 2014. http://dx.doi.org/10.15439/2014F304 pp. 669–677.
  • 5. E. Michel, A. Emilien, and M.-P. Cani, “Generation of folded terrains from simple vector maps,” in Eurographics 2015 short paper proceedings. The Eurographics Association, 2015. http://dx.doi.org/10.2312/egsh.20151019
  • 6. O. Argudo, E. Galin, A. Peytavie, A. Paris, J. Gain, and E. Guérin, “Orometry-based terrain analysis and synthesis,” ACM Transactions on Graphics (TOG), vol. 38, no. 6, pp. 1–12, 2019. http://dx.doi.org/10.1145/3355089.3356535
  • 7. D. B. Adams, “Feature-based interactive terrain sketching,” Master’s thesis, Brigham Young University, 2009. [Online]. Available: hdl.lib. byu.edu/1877/etd3221
  • 8. S. T. Teoh, “River and coastal action in automatic terrain generation,” in Proceedings of the 2008 International Conference on Computer Graphics and Virtual Reality, 2008, pp. 3–9. [Online]. Available: citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=316be57e56662a0113a5678eb29dd5b3b951694a
  • 9. G. Cordonnier, J. Braun, M.-P. Cani, B. Benes, E. Galin, A. Peytavie, and E. Guérin, “Large scale terrain generation from tectonic uplift and fluvial erosion,” Computer Graphics Forum, vol. 35, no. 2, pp. 165–175, 2016. http://dx.doi.org/10.1111/cgf.12820
  • 10. M. Becher, M. Krone, G. Reina, and T. Ertl, “Feature-based volumetric terrain generation and decoration,” IEEE Trans. Vis. Comput. Graphics, vol. 25, no. 2, pp. 1283–1296, 2019. http://dx.doi.org/10.1109/TVCG.2017.2762304
  • 11. A. Paris, E. Galin, A. Peytavie, E. Guérin, and J. Gain, “Terrain amplification with implicit 3d features,” ACM Transactions on Graphics (TOG), vol. 38, no. 5, pp. 1–15, 2019. http://dx.doi.org/10.1145/3342765
  • 12. A. Peytavie, E. Galin, J. Grosjean, and S. Mérillou, “Arches: a framework for modeling complex terrains,” Computer Graphics Forum, vol. 28, no. 2, pp. 457–467, 2009. http://dx.doi.org/10.1111/j.1467-8659.2009.01385.x
  • 13. G. Cordonnier, M.-P. Cani, B. Benes, J. Braun, and E. Galin, “Sculpting mountains: Interactive terrain modeling based on subsurface geology,” IEEE Trans. Vis. Comput. Graphics, vol. 24, no. 5, pp. 1756–1769, 2017. http://dx.doi.org/10.1109/TVCG.2017.2689022
  • 14. B. B. Cael, A. J. Heathcote, and D. A. Seekell, “The volume and mean depth of Earth’s lakes,” Geophysical Research Letters, vol. 44, no. 1, pp. 209–218, 2017. http://dx.doi.org/10.1002/2016GL071378
  • 15. R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM Journal on Computing, vol. 1, no. 2, pp. 146–160, 1972. http://dx.doi.org/10.1109/SWAT.1971.10
  • 16. J. Cheriyan and S. N. Maheshwari, “Analysis of preflow push algorithms for maximum network flow,” SIAM Journal on Computing, vol. 18, no. 6, pp. 1057–1086, 1989. http://dx.doi.org/10.1137/0218072
Uwagi
1. The research was supported by Warsaw University of Technology faculty grant.
2. Thematic Tracks Regular Papers
3. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f56b2fdf-fa83-44a7-b5a8-2aebd3015730
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.