PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of experiments approach in AZ31 powder selective laser melting process optimization

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Additive manufacturing (AM) technologies are used to produce objects from a wide variety of materials. Technologies that enable processing of metal engineering materials such as selective laser melting have become particularly important. The group of materials processed in this technology comprises stainless steel, CoCr, titanium and aluminum alloys and is continuously expanding to include new materials. The results of studies into AZ31 magnesium powder selective laser melting process optimization are presented in this paper. Optimization was aimed at minimizing the melted material porosity and determining the influence of and correlations between the analyzed process parameters. Design of experiments (DOE) approach was used, specifically full factorial design for three factors and rotatable design for two factors. Satisfactory porosity values were obtained in the <0.5% range. The results were used to prepare a mathematical model for the resulting porosity depending on the parameters used. Additionally, it was shown that information on linear energy density and scan velocity is not sufficient to describe the SLM process, and that it is necessary to provide detailed values of component parameters.
Rocznik
Strony
9--18
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
  • Centre for Advanced Manufacturing Technologies CAMT, Faculty of Mechanical Engineering, Wroclaw University of Technology, Wroclaw, Poland
  • Centre for Advanced Manufacturing Technologies CAMT, Faculty of Mechanical Engineering, Wroclaw University of Technology, Wroclaw, Poland
autor
  • Centre for Advanced Manufacturing Technologies CAMT, Faculty of Mechanical Engineering, Wroclaw University of Technology, Wroclaw, Poland
Bibliografia
  • [1] T. Wohlers, Wohlers Report, Wohlers Associates, Inc. Fort Collins, 2014.
  • [2] M. Averyanova, E. Cicala, Ph. Bertrand, D. Grevey, Experimental design approach to optimize Selective laser Melting of martensitic 17-4 PH powder: part I–single laser tracks and first layer, Rapid Prototyping Journal 18 (1) (2012) 28–37. http://dx.doi.org/10.1108/13552541211193476.
  • [3] A. Białobrzeski, K. Saja, K. Hubner, Ultralight magnesium- lithium alloys, Archives of Foundry Engineering 7 (3) (2007) 11–16, http://www.afe.polsl.pl/index.php/pl/673/ultralight- magnesium-lithium-alloys-for-plastic-working.pdf (accessed 29.06.15, 15:40 GMT +01:00).
  • [4] F. Witte, The history of biodegradable magnesium implants: a review, Acta Biomaterialia 6 (2010) 1680–1692. http://dx.doi. org/10.1016/j.actbio.2010.02.028.
  • [5] M. Peuster, P. Beerbaum, F.W. Bach, H. Hauser, Are resorbable implants about to become a reality? Cardiology in the Young 16 (2) (2006) 107–116. http://dx.doi.org/10.1017/S104795110 6000011.
  • [6] B. Denkena, A. Lucas, Biocompatible magnesium alloys as absorbable implant materials – adjusted surface and subsurface properties by machining processes, CIRP Annals – Manufacturing Technology 56 (1) (2007) 113–116. http://dx. doi.org/10.1016/j.cirp.2007.05.029.
  • [7] S. Zhang, X. Zhang, Ch. Zhao, J. Li, Y. Song, Ch Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, Y. Bian, Research on an Mg-Zn alloy as a degradable biomaterial, Acta Biomaterialia 6 (2010) 626–640. http://dx.doi.org/10.1016/j.actbio.2009.06.028.
  • [8] K. Bobe, E. Willbold, I. Morgenthal, Andersen, T. Studnitzky, J. Nellesen, W. Tillmann, C. Vogt, K. Vano, F. Witte, In vitro and in vivo evaluation of biodegradable, open-porous scaffolds made of sintered magnesium W4 short fibres, Acta Biomaterialia 9 (2013) 8611–8623. http://dx.doi.org/10.1016/j. actbio.2013.03.035.
  • [9] X. Feng, T. Al, Microstructure evolution and mechanical behaviour of AZ31 Mg alloy processed by equal-channel angular pressing, Transactions of Nonferrous Metals Society of China 19 (2009) 293–298. http://dx.doi.org/10.1016/j. jmrt.2014.10.012.
  • [10] J. Sun, Y. Yang, D. Wang, Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method, Optics & Laser Technology 49 (2013) 118–124. http://dx.doi.org/10.1016/j.optlastec.2012.12.002.
  • [11] K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, W. Verheecke, J.P. Kruth, Process optimization and microstructural analysis for Selective laser Melting of AlSi10Mg, in: Solid Freeform Fabrication Symposium Proceedings. Solid Freeform Fabrication Symposium, Austin, TX, USA, August 8–10, 2011, http://sffsymposium.engr.utexas.edu/ Manuscripts/2011/2011-37-Kempen.pdf (accessed 29.06.15, 15:40 GMT +01:00).
  • [12] C.C. Ng, M.M. Savalani, H.C. Man, Fabrication of magnesium using selective laser melting technique, Rapid Prototyping Journal 17 (6) (2011) 479–490. http://dx.doi.org/10.1108/ 13552541111184206.
  • [13] C.C. Ng, M.M. Savalani, M.L. Lau, H.C. Man, Microstructure and mechanical properties of selective laser melted magnesium, Applied Surface Science 257 (2011) 7447–7454. http://dx.doi.org/10.1016/j.apsusc.2011.03.004.
  • [14] B. Zhang, H. Liao, Ch Codett, Effects of processing parameters on properties of selective laser melting Mg-9%Al powder mixture, Materials and Design 34 (2012) 753–758. http://dx. doi.org/10.1016/j.matdes.2011.06.061.
  • [15] M.M. Savalani, C.C. Ng, H.C. Man, Selective laser melting of magnesium for future applications in the medicine, in: International Conference on Manufacturing Automation, Hong Kong, China, (2010) 50–54. http://dx.doi.org/10.1109/ ICMA.2010.45.
  • [16] M. Krishnan, E. Atzeni, R. Canali, F. Calignano, D. Manfredi, E. P. Ambrosio, L. Iuliano, On the effect of process parameters on properties of AlSi10Mg parts produced by DMLS, Rapid Prototyping Journal 20 (6) (2014) 449–458. http://dx.doi.org/ 10.1108/RPJ-03-2013-0028.
  • [17] H. Liao, J. Shie, Optimization on selective laser sintering of metallic powder via design of experiments method, Rapid Prototyping Journal 13 (3) (2007) 156–162. http://dx.doi.org/ 10.1108/13552540710750906.
  • [18] A.N. Chatterjee, S. Kumar, P. Saha, P.K. Mishra, A. Roy Choudhury, An experimental design approach to selective laser sintering of low carbon steel, Journal of Materials Processing Technology 136 (2003) 151–157. http://dx.doi.org/ 10.1016/S0924-0136(03)00132-8.
  • [19] A.K. Gupta, D.G. Kabe, Design and Analysis of Experiments, World Scientific Publishing Company, Singapore, 2013.
  • [20] G. Schwarz, Estimating the dimension of a model, The Annals of Statistics 6 (2) (1978) 461–464. http://dx.doi.org/ 10.1214/aos/1176344136.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f56b28a1-391f-4b16-b0ae-33074a746698
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.