PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Remarks on global solutions to the initial-boundary value problem for quasilinear degenerate parabolic equations with a nonlinear source term

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We give an existence theorem of global solution to the initial-boundary value problem for [formula] under some smallness conditions on the initial data, where [formula] is a positive function of [formula] admitting the degeneracy property δ (0) = 0. We are interested in the case where [formula] has no exponent m ≥ 0 such that [formula]. A typical example is [formula]. ƒ (u) is a function like [formula] A decay estimate for [formula] is also given.
Rocznik
Strony
395--414
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
  • Kyushu University Faculty of Mathematics Moto-oka 744, Fukuoka 819-0395, Japan
Bibliografia
  • [1] N.D. Alikakos, Lp-bound of solutions of reaction-diffusion equations, Comm. Partial Differential Equations 4 (1979), 827-868.
  • [2] N.D. Alikakos, R. Rostamian, Gradient estimates for degenerate diffusion equations, Math. Ann. 259 (1982), 827-868.
  • [3] D. Andreucci, A.F. Tedeev, A Fujita type result for a degenerate Neumann problem in domains with noncompact boundary, J. Math. Anal. Appl. 231 (1999), 543-567.
  • [4] E. DiBenedetto, Degenerate Parabolic Equations, Springer, New York, 1993.
  • [5] Z. Junning, The asymptotic behaviour of solutions of a quasilinear degenerate parabolic equation, J. Differential Equations 102 (1993), 35-52.
  • [6] H. Levine, The role of critical exponents in blow-up theorems, SIAM Rev. 37 (1990), 262-288.
  • [7] G.M. Lieberman, Time-periodic solutions of quasilinear parabolic differential equations, J. Math. Anal. Appl. 264 (2001), 617-638.
  • [8] S. Mizohata, The Theory of Partial Differential Equations, Cambridge Univ. Press, Cambridge, New York, 1973.
  • [9] M. Nakao, Global solutions for some nonlinear parabolic equations with non-monotonic perturbations, Nonlinear Anal. 10 (1986), 455-466.
  • [10] M. Nakao, Energy decay for a nonlinear generalized Klein-Gordon equation in exterior domains with a nonlinear localized dissipative term, J. Math. Soc. Japan 64 (2012), 851-883.
  • [11] M. Nakao, Existence of global decaying solutions to the exterior problem for the Klein-Gordon equation with a nonlinear localized dissipation and a derivative non-linearity, J. Differential Equations 255 (2013), 3940-3970.
  • [12] M. Nakao, Global existence to the initial-boundary value problem for a system of semi-linear wave equations, Nonlinear Analysis TMA 146 (2016), 233-257.
  • [13] M. Nakao, On the initial-boundary value problem for some quasilinear parabolic equations of divergence form, J. Differential Equations 263 (2017), 8565-8580.
  • [14] M. Nakao, Global existence to the initial-boundary value problem for a system of nonlinear-diffusion and wave equations, J. Differential Equations 264 (2018), 134-162.
  • [15] M. Nakao, Smoothing effects of the initial-boundary value problem for logarithmic type quasilinear parabolic equations, J. Math. Anal. Appl. 462 (2018), 1585-1604.
  • [16] M. Nakao, C. Chen, Global existence and gradient estimates for the quasilinear parabolic equations of m-Laplacian type with a nonlinear convection term, J. Differential Equations 162 (2000), 224-250.
  • [17] M. Nakao, A. Naimah, On global attractor for nonlinear parabolic equations of m-Laplacian type, J. Math. Anal. Appl. 331 (2007), 793-809.
  • [18] M. Nakao, Y. Ohara, Gradient estimates of periodic solutions for some quasilinear parabolic equations, J. Math. Anal. Appl. 204 (1996), 868-883.
  • [19] Y. Ohara, L°° estimates of solutions of some nonlinear degenerate parabolic equations, Nonlinear Anal. 18 (1992), 413-426.
  • [20] M. Ótani, Nonmonotone perturbations for nonlinear parabolic equations associated with sub differential operators, Cauchy problems, J. Differential Equations 46 (1982), 268-299.
  • [21] M. Tsutsumi, Existence and nonexistence of global solutions for nonlinear parabolic equations, Publ. RIMS, Kyoto Univ. 8 (1972), 211-229.
  • [22] M. Tsutsumi, On solutions of some doubly nonlinear degenerate parabolic equations with absorption, J. Math. Anal. Appl. 132 (1988), 187-212.
  • [23] L. Veron, Coercivite et proprietes regularisantes des semi-groupes non-lineaires dans les espaces de Banach, Faculte des Sciences et Techniques, Universite Francois Rabelais, Tours, France, 1976.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5673a1d-ae2f-41b2-8c0d-679a9c8e06df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.