e-Informatica Software Engineering Journal, Volume 10, Issue 1, 2016, pages: 51-67, DOI 10.5277/e-Inf160103

Automatic SUMO to UML translation

Bogumita Hnatkowska*

*Faculty of Computer Science and Management, Department of Informatics, Wroctaw University of Science
and Technology

bogumila.hnatkowska@pwr.edu.pl

Abstract

Existing ontologies are a valuable source of domain knowledge. That knowledge could be extracted
and reused to create domain models. The extraction process can be aided by tools that enable
browsing ontology, marking interesting notions and automatic conversion of selected elements to
other notations. The paper presents a tool that can be used for SUMO to UML translation. Such
transformation is feasible and results in a high-quality domain model, which is consistent, correct,
and complete providing that input ontology has the same features.

Keywords: SUMO ontology, information retrieving, domain model, UML, class diagram

1. Introduction

Domain model is a key development artifact. It
captures the most important types of objects in
the context of the domain, i.e. entities that exist
or events that transpire in the environment in
which the system works [1,2]. Domain model,
besides business object models and glossary [1],
is used to document the domain to which the
system relates. Domain model could be repre-
sented with the use of different notations, among
which the most popular are Entity Relationships
Diagrams and UML class diagrams.

Domain models should be of high quality to
reduce the number of changes when the develop-
ment proceeds. Among quality factors the most
important are [3]: consistency, completeness, and
correctness (3C).

Consistency and completeness could be per-
ceived from 2 perspectives: external, and inter-
nal, from which the external is more difficult to
achieve. External completeness means that we
have identified in the domain all important enti-
ties and relationships, while external consistency
means that we have documented the identified el-
ements in the way that preserves their semantics
[4]. On the other side, domain model is internally

consistent when it contains no contradictions, and
it is internally complete when it doesn’t include
any undefined object, and no information is left
unstated or is to be determined [2].

Definition of model correctness is much va-
guer. Some authors define it as a mixture of
consistency and completeness [3], others [4] re-
fer it to syntactic correctness (that meaning of
correctness is used further in the paper).

A business analyst typically elaborates do-
main model during business modeling or require-
ment specification phase [2].

Different elicitation techniques serve to dis-
cover entities in the domain, e.g. interviews.

However, the obtained results strongly de-
pend on the complexity of the domain, business
analyst experience, and the quality of information
sources.

More difficult domain, less experienced ana-
lyst or poor quality sources, more likely worse
quality of the resulted domain model.

On the other side, domain knowledge is often
included in existing ontologies, and could be ex-
tracted from them. The extraction process could
be (partially) automated, resulting in a high-
quality domain model. Consistency and correct-
ness of that model could be guaranteed by con-

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_10/eInformatica2016Art3.pdf

52

Bogumita Hnatkowska

struction, assuming that the source (ontology)
itself is correct and consistent with the domain.
The model completeness, at least internal, could
also be checked.

Many papers are proving that the domain
knowledge represented by ontology can be widely
used in the design process of information systems.
For example, in [5] author analyzes the role of on-
tologies in software engineering process. He claims
that ontology is a significant source of knowledge
in the conceptualization phase and proposes the
ontology life cycle as the background for software
development. A similar view is presented in [6]
where authors state that the integration with
ontology can improve software modeling. An
application of domain ontologies to conceptual
model development is also in presented [7].

There are many high-level ontologies cur-
rently developed, e g. BFO, Cyc, GFO, SUMO.
The last one, SUMO, seems to be very promising
because it became the basis for the development
of many specific domain ontologies. A particularly
useful feature is that the notions of SUMO have
formal definitions (expressed in SUO-KIF lan-
guage) and at the same time they are mapped to
the WordNet lexicon [8]. SUO-KIF is a variant of
KIF (Knowledge Interchange Format) language
[9]. Knowledge is described declaratively as ob-
jects, functions, relations, and rules. SUMO and
related ontologies form the largest formal public
ontology in existence today [8,9]. What is more,
the ontologies that extend SUMO, are available
under GNU General Public License.

The paper presents a tool to automatic
SUMO to UML translation. It is thought as a sup-
port for business analyst collaborating with busi-
ness experts. The main functionalities include:
browsing ontology content, selection of interest-
ing elements, and translation of selected elements
to a UML class diagram. The presentation of solu-
tion covers a meta-model of SUMO notions (the
main input to the transformation process), the
tool architecture, and an example of the domain
model that results from the tool application. The
genesis of the tool (related works) is also shortly
described as well as the problems met during
implementation, and the elements that will be
included in the next release.

The only tool available on the Internet that
supports SUMO is SUMO browser, called Sigma
[10]. Tools that allow creating a UML class dia-
gram from existing ontology exist for other for-
malisms, e.g. OWL [11], but not for SUO-KIF.
However, SUO-KIF could be translated to other
formalisms, e.g. DLP [12].

SUMO was selected from existing ontologies
because of the following reasons:

— It constitutes the biggest set of ontologies
which is freely available; SUMO contains def-
initions of more than 21 thousands of terms,
and more than 70 thousands of axioms; more-
over, the mapping of SUMO notion to Word-
Net is also available [9];

— SUO-KIF language is very flexible; it allows
to handle relations among three or more
things directly (e.g. OWL does not); it sup-
ports statements and rules written not only
in First-Order Logic, but also (at least par-
tially), in the Higher-Order Logic (e.g. “(be-
lieves John (likes Bob Sue))”, when the second
argument of “believes” is a proposition) [9];

— Existing translation of SUMO to OWL is
a provisional and necessarily lossy [9], what
put in question its usefulness; on the other
hand, it is possible to perform the reverse
translation from OWL to SUMO, what seems
more promising, because the result could be
extended with the usage of SUO-KIF features;

— The flexibility of SUO-KIF is very similar
to SBVR standard [13|, promoted by OMG,
defining the meta-model for representation
of business vocabulary, and business rules;
SBVR statements could be directly translated
either to SUO-KIF or UML.

UML was selected as the target language
for the translation because it is a general pur-
pose modeling and specification language com-
monly used not only by programmers but also
by business analysts. Besides Entity Relation-
ship Diagram it is the often selected nota-
tion to describe domain models. Together with
OCL it forms a very useful tandem to define
constraints on the domain behavior in a for-
mal way. UML class diagram could be eas-
ily translated to other representations, either
more business oriented like SBVR (e.g. [13])

Automatic SUMO to UML translation

93

or more program oriented like java, c++, SQL
(e.g. [14]).

A tool to automatic SUMO to UML trans-
lation can be useful for any person (especially
a business analyst) who would like to familiarize
with some specific domain. Theoretically, he or
she can read the ontology definition for that pur-
pose. Unfortunately, even if SUMO browser is in
use, knowledge extraction from SUMO is a chal-
lenge. SUMO is expressed in textual SUO-KIF
language, not commonly known. After a while,
a reader is overloaded with textual definitions.
The aim of the paper is to propose a solution to
that problem. The solution is based on the obser-
vations that: (1) UML is a universal specification
and modeling language to present data models,
software architecture or business models; more-
over it is supported by many tools (CASE, IDE),
(2) graphical notations are easier to understand
especially if the model is complex, with many
relationships among model elements.

The rest of the paper is structured as fol-
lows. Section 2 presents related works and clearly
states the paper’s contribution. The proposed
SUMO meta-model which supports transforma-
tion process is described in Section 3. The tool
and its main functional components are presented
in Section 4. Newly introduced transformation
rules for SUMO attributes and their relations
are the subject of Section 5. Section 6 shortly
defines existing transformation rules. An example
of transformation with a short discussion of short-
comings is given in Section 7. Section 8 presents
the problems to be addressed in the future. The
last Section 9 concludes the paper.

2. Related Works

The paper [15] is the first in a series considering
SUMO ontology as a source for domain modeling.
It presents an initial set of mapping rules between
SUMO notions and UML notions, and identifies
the elements difficult to extract, e.g. attributes.

The paper [16] presents an outline of a sys-
tematic approach to the development of domain
model on the basis of selected SUMO ontologies.
It involves only a few steps. It starts with needs

description, next goes through identification of

business processes in the area of interests that

help to decide if a notion of an ontology is in
the area of interests (and should be translated to

UML) or not. After analysis of selected elements,

they are translated (manually) to a UML class

diagram. The approach was checked by examples.

Some SUMO-UML mappings were also refined.

The biggest problems the authors claim about

are:

— ontology size — it contains many irrelevant
(out of scope) elements,

— domain knowledge is spread over many on-
tologies (files),

— some facts are defined at very general level
(predicates between Object, Physical) what
makes the interpretation more difficult.

In the paper [17] the refined version of the
approach from [16] is presented. It also consists of
only a few steps, but their definition is much more
formal and close to implementation needs. The
main idea of the approach is a guided selection
of SUMO extract, which will be further trans-
lated to UML. The paper also proposes some new
transformation rules, e.g. transformation of unary
functions. The general finding of that work is that
the process of knowledge extraction must be sup-
ported by a tool. Otherwise, the process, even if
the results are promising, is very time-consuming,
and error prone.

The contributions of this paper are as follows:
— The meta-model of SUMO notions used

within a transformation process (see Section

3).

— Definition of tool architecture (see Section 4).

— New transformation rules for SUMO at-
tributes and their relations (see Section 5).

— Verification and correction of transformation
rules defined in [15-17]; the subset of imple-
mented rules (including the changed ones) is
presented in Section 6.

Transformation process between two mod-
els can be specified and performed in many
ways. If the source and targeted models are ex-
pressed in XML language, the transformation
process can be defined as Extensible Stylesheet
Language Transformation (XSLT) and executed
by a dedicated engine (see [18] for an exam-

54

Bogumita Hnatkowska

ple). This approach suffers from low readability
and maintainability, so it is why the transfor-
mation between meta-models is considered more
often (e.g. [19]). In this approach at first the
meta-models of the source and target models
are prepared or adopted, and next the transfor-
mation rules between meta-classes are defined.
Transformation rules can be expressed either in
operative languages, like Atlas Transformation
Language (ATL), java or declarative ones like
QVT-Relations. In the paper, the approach based
on meta-models is in use. The SUMO meta-model
is defined by the author of that paper. The
UML meta-model is freely available (eclipse.uml2
framework).

SUMO to UML transformation rules defined
in [15-17] answer the question how to map el-
ements like classes and their hierarchies or re-
lations and their hierarchies but they do not
address SUMO attributes and their relationships.
The problem with SUMO attributes is that there
are represented differently than attributes in
UML language. In SUMO the attribute is defined
as “a quality which we cannot or choose not to
reify into subclasses of Objects” [8]. Because of
that, attributes are assigned not to classes as in
UML but to class‘ instances. This paper fills this
gap. The thorough analysis of SUMO relations
between attributes is here conducted. On that
basis a mapping of SUMO attributes to UML
language is proposed. The mapping involves def-
inition of a UML profile, presented in Section 5.

The set of transformation rules defined in
[15-17] was verified and extended in the mean-
time. The newly introduced transformation rules
(including those defined for attributes), and the
changed transformation rules with justification
are presented in Section 6.

3. Meta-model of SUMO notions

To support SUMO to UML transformation pro-
cess the content of SUO-KIF files has to be rep-
resented at the higher abstraction level, that en-
ables both: to check static consistency rules, and
to perform the transformation process itself. It
is achieved with so called meta-model of SUMO

notions — see Fig. 1. The initial version of the

meta-model was presented in [20]. Here the dia-

gram is extended with new meta-classes.

The diagram reflects logical structure of
SUO-KIF file which can be perceived as a set
of sentences. A SUMO sentence is represented by
Sentence abstract class — a parent of all possible
kinds of statements in SUMO. Each sentence be-
longs to exactly one OntologySegment (SUO-KIF
file). Below there is a short description of concrete
sentence classes:

1. LogicalSentence — a sentence starting with
a logical operator, e.g. “(=> ...), (<=>...)"
a tautology built with implication and/or
equivalence operator,

2. QuantifiedSentence — a sentence starting ei-
ther with universal or existential quantifier:
“(forall ...) or (exists ...)",

3. RelationalSentence — a sentence starting with
a name of function or relation: “(name ...)”;
a fact in the considered domain stating, for
example, that John likes Karin.

It is assumed that only sentences written at
the first level are instantiated by SUMO to UML
translator, e.g. the text: “(=> (instance TREL
BinaryPredicate) (valence "REL 2))” will be in-
stantiated as one sentence even if it contains two
internal sub-sentences. The parser omits SUMO
comments.

The right side of the class diagram shows the
structure of SUMO notions. The Entity is “the
root node of the ontology” [8]. It is associated
with all sentences it belongs to (as a part).

Entity is the parent for two UML classes in-
teresting in the context of considered transforma-
tion:

— Relation — definition of SUMO relation or
function, together with its domains and/or
range (see Fig. 2),

— Type — represents a SUMO notion that can be
instantiated, e.g. BinaryPredicate; types that
represent SUMO Attributes are distinguished
with isAttribute=true field.

Each instance of RelationalSentence is linked
to one Relation (basicRelation role), and many
FEntities involved (params role), e.g. the sentence:
“(domain part 1 Object)’ is linked to domain
relation, and has three parameters.

Automatic SUMO to UML translation

95

OntologySemgent

-id
-name : String
-isLoaded : Boolean

belongs to

Senterice

-sumaTxt : String

w

<<gnumeration==
ErrorType

RelationalSentence

sentences

<

LegicalSentence

NONE

-orderBy : Integer
-isSelecled | Boolean

QuantifiedSentence

NOT_DEFINED " *
NOT_FULLY_DEFINED

TO_MANY_DOMAINS
IMCONSISTENT_DOMAINS

partOf
Entity
params - .
. -name : String
-isSelectad : Boolean params
Relation Type

-isFunction : Boolean -attribute : Boolean

basicRelation

- larity @ Integer
-arror @ ErrorType

basic ﬁ'ﬁ

ComplexType

Figure 1. Meta-model of SUMO notions — main elements

Sometimes relational sentences point out
a type indirectly by referencing to a function that
returns a type; see the sentence: “(subclass Fod-
der (FoodForFn DomesticAnimal))” for example.
Fodder is a subclass of the type returned by the
function FoodForFn called with DomesticAnimal
parameter. According to the specification, that
function returns a subclass of SelfConnectedOb-
ject. Such cases are represented in the proposed
SUMO meta-model by ComplexType class. An
instance of ComplezType class refers to the func-
tion it is built upon (basic role) — FoodForFn —
and remembers the function parameters (params
role) — DomesticAnimal.

Some specific relational sentences (defined
in SUMO upper ontology) play the crucial role
in the transformation process. Up to now seven
types of such sentences were identified:

1. Documentation sentence (Documentation-
Sent) — a sentence starting with “(documen-
tation ...)"; contains documentation (an in-
stance of SymbolicString) in a specific lan-
guage for specific entity;

2. Instance sentence (InstanceSent) — a sentence
starting with “(instance ...)"; is associated
with an entity (instance), and a type for that
instance;

3.

Subclass sentence (SubclassSent) — a sentence
starting with “(subclass . ..)”; used to describe
inheritance hierarchy between SUMO classes;
it is associated with parent and child types;

Subrelation sentence (SubrelationSent) —
a sentence starting with “(subrelation ...)”;
allows to describe inheritance hierarchy be-
tween SUMO relations; it is associated with
parent and child relations;

Domain sentence (DomainSent) — a sentence
starting either with “(domain ...)” or “(do-
mainSubclass . ..)”; it represents domain ele-
ment (Type) for specific relation;

Range sentence (RangeSent) — a sen-
tence starting either with “(range ...)”

or “(rangeSubclass ...)”; represents
(Rela-

a range (Type)

tion with isFunction attribute set to
true);

Partition sentence (PartitionSent) — a sen-
tence starting either with “(partition ...)”
or “(disjointDecomposition ...)” or “(ex-
haustiveDecomposition ...)"; all sentences
represent partition of a class C into sub-
classes but they are characterized by dif-
ferent properties represented by Partition-
Sent attributes (isOverlapping, isComplete);

for a function

56

Bogumita Hnatkowska

[Sentence DocumentationSent 0 Entity =<gnumarabon=>
[-ordedy : Intager <J4anguage : String - -name : String DocumentationType
——ErisSala:Lad : Bookan ~darTat : String [ocumentations | jucaaiad : Bonkean o
ypa | Documants tion Typa A farmat
1 termFormat
AL
childran parent
SubmlationSent - Relation
-subclassRestricion ; Bookean |parents child |dsFundion : Bookan
g -/ arity : Integar
-amar : EmarTypa
RangeSent fange el oy
| subclassRestricton : Boakean | 91 ranga
Type
o isAtirbuts - Boakaan
InstanceSert |JrsEnees
typa parant
damaing
DomainSent
-subclassRastriction : Badkan typa
-pos ¢ Integar chikd parent
SubclassSent | *
. paranis
childran
PartitionSent
-isCvarapping : Bookaan
-isComplete . Bookan parfifione

Figure 2. Meta-model of SUMO notions — hierarchy of relational sentences

i.e. normal partition assumes that the sub-
classes are mutually disjoint and cover C
disjointDecomposition requires only that the
subclasses are disjoint; and exhaustiveDe-
composition disallows to have instances of
C which do not belong to any of its sub-
classes (the subclasses don’t need to be dis-
joint).

4. Architecture of SUMO to UML
Translator

SUMO to UML translator is implemented in java
8 with Swing library. The main functional ele-
ments of the translator are presented on a com-
ponent diagram — see Fig. 3.

End-user is allowed to select any subset of on-
tology SUO-KIF files (called ontology segments)
to be read by the tool. The loading process is
controlled by SumoLoadConttroller component,
and is presented — with the use of a sequence
diagram — in Fig. 4.

SumoLoadController runs SumoParser to:
(a) check the syntax correctness of the file, (b)
walk through all tokens in the file and to call
SumoModelBuilder to translate SUMO sentences

into internal SUMO meta-model representation.
SumoParser was generated with antlr [21] from
SUO-KIF context-free grammar [22].

Unfortunately, it appeared that SUMO ontol-
ogy suffers from some bugs that can’t be found by
the parser (according to the rules formulated in
context-free grammar). The bugs could negatively
influence the correctness of the intended transfor-
mation process. So, there was a strong need to
implement SumoChecker component, which main
functionality is to perform different consistency
checks. The buggy elements are marked and re-
ported by the tool, so the user has an opportunity
to correct the input.

As it was mentioned in the previous Sec-
tion, domain knowledge is spread over different
SUO-KIF files what is not very convenient for
transformation. That is why a separate compo-
nent — SumoReasoner — was introduced. Its main
responsibility is to update previously generated
SUMO model by inferring information indirectly
defined in SUMO, e.g.: a subrelation could inherit
domain definition from its parents; in such case
SumoReasoner copies domains from the parent
to all its children.

It is also planned (that feature has not been
implemented yet), that SumoReasoner will com-

Automatic SUMO to UML translation

o7

Main

<<gompenents > E

<<COomponent==
SumolLoadCentraller

| _} <<COmponent>>
SumoChecker

E =<component= =
SumoUMLTranslator

T ~
~
I

W :
<<oom ponents> <<components> @
SumoParsar SumoRaasoner
i i
i i
W v
<< 00M PONEnt> > << COMPONENt> > @
SumaModelBuilder Theor emProver

Figure 3. Architecture (functional view) of SUMO to UML translator

main : Main

‘ SumoLoadCentraller ‘ ‘ SumaParser ‘ ‘

SumaModelBuilder ‘ ‘ SumoReasaner

‘ SumoChecker

‘ TheoremProver

loop

[for each selected module]
load Selecled Module(module)

|

parse{module)

=z
1
B

I
[for each elem found)
create_SumoModel_Element{elem,

v

check static consistency

ules.

infer implicitly defined elements

il

|
infer Implicitly defined elements.

T
|
i
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k]
|
|

|
|
|
|
|
| |
I |
| |
| |
| I
I !
| |
| |
| T
| |
| |
| |
| |
| |
| |
T |
| |

g

S 55 N S N

Figure 4. Processing of ontology segment

municate with selected theorem prover to rea-
son knowledge from the rules. The new version
of Sigma tool [10] is prepared to collaborate
with E prover [23]. E prover can deliver an-
swers for specifically marked conjecture formulas.
Sigma has implemented mapping rules between
SUO-KIF and TPTP formalism used by E prover.
In consequence, a user can formulate questions
like: “(instance 7X BinaryPredicate)” to find out
all instances of BinaryPredicate.
SumoUMLTranslator component realizes the
transformation process. It produces — with the
use of eclipse.emf and eclipse.uml2 frameworks
— an instance of UML model (version 2.5 [24]),
and stores it in a file (*.uml), that can be read in
a form of a tree or can be visualized on a diagram
with additional tools, like e.g. Papyrus [25].

5. Translation of SUMO Attributes
and Their Relations to UML

This section presents a proposal of SUMO at-
tributes translation to UML.

5.1. Attributes and Attributes’ Relations
in SUMO

Attribute in SUMO is a subclass of Abstract class.
Instances of Abstract class “cannot exist at a par-
ticular place and time without some physical
encoding or embodiment” [8]. In other words,
attributes represent some properties or charac-
teristics of instances.

Attribute class has two direct subclasses (In-
ternalAttribute, and RelationalAttribute), which

o8

Bogumita Hnatkowska

in turn have many own subclasses. The hierarchy

of attributes is more than five levels deep.
Attribute as a class is a domain of several

SUMO relations (given below in alphabetic or-

der):

— contraryAttribute: Attribute x . .. x Attribute —
is used to define “a set of Attributes such that
something cannot simultaneously have more
than one of these Attributes. For example,
(contraryAttribute Pliable Rigid) means that
nothing can be both Pliable and Rigid” [8];

— ezhaustive Attribute: AttributeSubclass x At-
tribute x ...x Attrbute — “relates a class to
a set of Attributes, and it means that the
elements of this set exhaust the instances of
the class. For example, (exhaustiveAttribute
PhysicalState Solid Fluid Liquid Gas Plasma)
means that there are only five instances of
the class PhysicalState” [8];

— subAttribute: Attribute x Attribute — means
that “the second argument can be ascribed
to everything which has the first argument
ascribed to it” [8]; it is a partial ordering rela-
tion what means that hierarchy of attributes
can form a tree;

— successorAttribute: Attribute x Attribute —
means that the second attribute comes imme-
diately after the first attribute on the scale
that they share, e.g. “(successorAttribute
DeluxeRoom SuiteRoom)”; subAttribute tu-
ples have nothing in common (are disjoint)
with successorAttribute tuples; moreover, suc-
cessorAttribute is not a partial ordering re-
lation what means that involved attributes
must be directly ordered;

— successorAttributeClosure: Attribute x At-
tribute — means that there is a chain of suc-
cessorAttribute assertions connecting the first
and the second parameter, e.g. “(successorAt-
tributeClosure StandardRoom SuiteRoom)”.
An assignment of an attribute instance to an

entity instance can be done with property relation

(or one of its subrelations), e.g. “(property 7En-

tity 7Attr)” means that ?Entity has the attribute

7 Attr.

The extended version of SUMO meta-model,
covering the newly introduced relations, is pre-
sented in Fig. 5. The successorAttributeClosure

relation is not included as it wont be translated
to the UML. The meta-class representing con-
traryAttribute relation (contraryAttributeSent) in-
herits all necessary assotiations from its parent.

5.2. Mappings of SUMO Attributes and
Attributes’ Relations to UML

5.2.1. Mappings of SUMO Attributes

Transformations of SUMO notions to UML
should preserve the original semantics as much
as it is possible. An existing transformation rule
maps any SUMO class to a UML class with the
same name. This rule needs to be refined for
attributes (understood as classes). As attribute
can have many instances (e.g. Solid, Fluid, Liquid,
Gas, Plasma are instances of PhysicalStateemph
attribute), it would be valuable to represent di-
rectly these instances on a UML class diagram. So
it is why Attribute class and their subclasses are
mapped to a UML enumeration data type with
the same name. “As a specialization of classifier,
enumeration can participate in generalization re-
lationships” [8]. That feature enables to represent
also inheritance hierarchy between Attribute sub-
classes. An enumeration value corresponds to
one of user-defined enumeration literals. Those
literals are used to represent attribute instances.

Not all relations between SUMO attributes
can be represented graphically on a class diagram.
Fortunately, UML is a very flexible language that
can be extended for specific purpose with the use
of profiles.

5.2.2. UML Profile for Modeling SUMO
Attributes

UML profile is a lightweight extension mecha-
nism to the UML by defining custom stereo-
types, tagged values, and constraints. Profiles
allow adaptation of the UML metamodel for dif-
ferent domains [26]. UML profiles were defined
for other ontology languages, e.g. OWL [27]. In
the paper “UML Profile for OWL” authors define
two-way mappings between ontology definition
meta-model (ODM) and Ontology UML profile.

Automatic SUMO to UML translation 59
RelationalSente nce ; f : Entity
A -
-ardeBy | Integer .)) . [|-name : Sting
-isSelected : Boolean { retational ces occursin -isSelected : Boolean
A LA e | parent | suec |prea| AN D8
instances
ContraryAtiributeSent
SubAttributeSent | SubAtiributeParents
* subAttributeChildren
SuccessiveAttributeSent
predecesors
SUCCESSOrs
ExhaustiveAttributeSant
Type
type [-isAttribute : Boclean

-attribute | Boolean

Figure 5. Extended version of SUMO meta-model — definition of attributes’ relations

UML profile is defined as a specific package,
containing stereotypes, and constrains. Those
stereotypes can have meta-attributes called
tagged values. “Stereotype is a profile class which
defines how an existing metaclass may be ex-
tended as part of a profile. It enables the use
of a platform or domain specific terminology or
notation in place of, or in addition to, the ones
used for the extended metaclass” [27].

<emataclass>>
Enumaration

<=metaclass>>
EnumarationLiteral

o

< steneoty pa>> <o sl ety pes >
Attribute Attributelnstance
-pos | Integer =0

inv: self. enumeration.oclleTypelf
(Attribute)

Figure 6. UML profile to represent SUMO attributes

UML profile for SUMO attributes introduces
only two stereotypes (see Fig. 6):

— «Attribute» that is applied to enumerations,
and

— «Attributelnstance» that is applied to enu-
meration literals being owned by the enumer-
ation with «Attribute» stereotype; this stereo-
type has one property (pos: Integer), which
introduces a tag definition; its semantics is
explained in subsection 5.1.

5.2.3. Mappings of Attributes’ Relations

This subchapter defines possible mappings for all
relations between SUMO attributes, identified in
Section 5.1, to UML language.
Transformation of contraryAttribute rela-
tion

The contraryAttribute relation is used to describe
the fact that two specific attributes cannot be
assigned to the same instance. Such a demand
can be represented by an Object Constraint Lan-
guage (OCL) invariant. OCL [28] is the language
which enables to define constraints on UML mod-
els formally. Thus, any SUMO sentence of the
form “(contrary Attribute atrl atr2)” will be trans-
formed as an invariant defined in the context of
Entity class, according to the schema:

60

Bogumita Hnatkowska

pos=13 [N\

=<gnumeration==

<< Aftribute>> !

Hotel RoomAttribute " |{pos=2 by
=chftributelntance== StandardRoom |
<<pltributelntance>> DeluxeRoom [~
=< Attributelntance>> SuiteRoom

|wos=m DN

Figure 7. Transformation of successorAttribute
relation

context Entity:

inv: not Entity.alllnstances()—>exists (e |
e.hasProperty ("atrl 7)
and e.hasProperty(’atr2’))

where hasProperty(name: String): Boolean is an
auxiliary function which checks whether a specific
entity e has assigned the attribute with a name
equal to the input parameter.
Transformation of exhaustiveAttribute re-
lation
The exhaustiveAttribute relation lists all instances
of a given attribute class. The list of instances
cannot be further extended. To achieve the same
semantics in UML language, the UML class rep-
resenting SUMO attribute will be marked as leaf
class (isLeaf = true).

Transformation of subAttribute relation

The subAttribute relation defines a hierarchy of

attribute instances. One attribute instance can

be a parent for many sub-attributes, e.g. “(subAt-
tribute Antropologist Scientist)”, “(subAttribute

Archeologist Scientist)”. It would be valuable

to present all these sub-attributes directly on

UML class diagram in the same way the other at-

tributes’ instances are represented, i.e. as enumer-

ation literals. However, the children of a specific
instance should be grouped together.

To achieve the demands mentioned above fol-
lowing transformation rule is proposed. Each sen-
tence of the form “(subAttribute atrSpec atrGen)”
will be transformed according to the schema:

— if not exists a new artificial enumeration
data type with «Attribute» stereotype and
name atrGen_ SubAttributes is created, e.g.
Scientists SubAttributes; the newly created
enumeration will inherit from the enumer-

<< Attribute>>
<<gnumeration==
Proffesion

=< Attributelntance>> Scientist

i

<< Attribute>>
<<@enumeraticn>>
Scientist_SubAttributes
== Attributelntance>> Anthropologist

Figure 8. Transformation of subAttribute relation

ation data type for which atrGen is an
enumeration literal; in the example Scien-
tists SubAttributes enumeration data type
will inherit from Proffesion enumeration data
type (see Fig. 7),

— atrSpec is defined as a new enumeration literal
in the atrGen_SubAttributes enumeration
data type; e.g. Anthropologist enumeration lit-
eral will be added to Scientists SubAttributes
enumeration.

Transformation of successorAttribute rela-

tion

The successorAttribute relation defines an di-

rect order between attributes. Such an order

can be represented with UML tag definitions

({pos = value}). An attribute instance which

is the first “in the queue” will have pos set to

1, its direct successor — pos set to 2, etc. For

example, see Fig. 8 on which transformation of

SUMO sentence: “(successorAttribute Standard-

Room DeluxeRoom)” is presented.

Transformation of successorAttributeClo-

sure relation

The successorAttributeClosure relation can be

inferred from successorAttribute relation, and it

is why it is not translated to the UML.

6. Examples of Transformation Rules

This section shortly presents the implemented
transformation rules focusing on those that were
changed in comparison to the previous publica-
tions [15-17]. Selected transformation rules are
described below.

Automatic SUMO to UML translation

61

6.1. Rule 1

SUMO FElement: Direct or indirect subclass of
Entity, e.g. City, Nation

UML Element: Class

Comment: Data values like Integers are also rep-
resented as separate classes (what results in uni-
form representation of relations).

6.2. Rule 2

SUMO Element: Binary (including self) and
higher arity relations with all domains defined
in the form “(domain relation int class)”, e.g.
“(domain citizen 1 Human)”, “(domain citizen 2
Nation)”

UML Element: Association with a proper arity,
e.g. citizen, capitalCity

Comment: Previously, when one of the domains
in relation was a data value, e.g. Integer, the
relation was represented either as an attribute
(for binary relation) or an association class; now,
all binary or higher arity relations are represented
in the same way, as associations.

6.3. Rule 3

SUMO Element: Relation domain or function
range defined in the form “(domainSubclass re-
lation int class)”, e.g. “(domainSubclass roomA-
menity 1 HotelUnit)”, or “(rangeSublcass function
class)”, e.g. “(rangeSublcass FoodForFn SelfCon-
nectedObject)”

UML Element: Generalization set, e.g. HotelU-
nit_ Subclasses, SelfConnectedObject Subclasses
Comment: domainSublcass is a constraint mean-
ing that the int’th element of each tuple in rela-
tion must be a subclass of a specific class; simi-
larly, rangeSubclass stays the same for function
ranges; that notion is represented by UML gen-
eralization set.

6.4. Rule 4

SUMO Element: Binary (including self) and
higher arity relations for which at least one do-
main is defined in the form “(domainSublcass
relation int class)”, e.g. “(domainSublcass roomA-

menity 1 HotelUnit)”, “(domainSubclass roomA-
menity 2 Physical)”

UML Element: Association among the results
of transformation of relation domains including
generalization sets, e.g. roomAmenity (associa-
tion between Physical Subclasses and HotelU-
nit_ Subclasses)

Comment: The previous transformation was in-
correct (misinterpreted semantics); the associa-
tion used to link classes; the new association links
generalization sets.

6.5. Rule 5

SUMO FElement: Subrelation relationship
“(subrelation child-relation parent-relation)”
e.g.“(subrelation geographicSubregion located)”

UML Element: Association with “subsetted” prop-
erty; association ends of child-relation will be
subsets of association ends of parent-relation;
e.g. geographicSubregion association ends will be
subsets of located association ends

Comment: subrelation is a constraint meaning
that every tuple of a child relation is also a tuple
of a parent relation; in the UML 2.5 such a feature
is represented by a subset constraint.

6.6. Rule 6

SUMO Element: Partition relationship in the
form “(partition C' C1 C2 ...)”

UML Element: Generalization set with isQOuver-
lapping=false and isComplete=true

Comment: New.

6.7. Rule 7

SUMO Element: Exhaustive decomposition rela-
tionship in the form “(exhaustiveDecomposition
ccrez...y

UML FElement: Generalization set with isOver-
lapping=true and isComplete=false

Comment: New.

6.8. Rule 8

SUMO Element: Disjoint decomposition relation-
ship in the form “(disjointDecomposition C' C1

62

Bogumita Hnatkowska

c2...)

UML Element: Generalization set with isOwver-
lapping=false and isComplete=false

Comment: New.

6.9. Rule 9

SUMO Element: Attribute class or its subclass
UML Element: Enumeration data type with «At-
tribute» stereotype

Comment: New.

6.10. Rule 10

SUMO Element: Attribute instance

UML FElement: Enumeration literal with «At-
tributelnstance» stereotype in enumeration data
type

Comment: New.

6.11. Rule 11

SUMO FElement: subclass relation between At-
tribute classes, e.g. “(subclass HotelRoomAt-
tribute Relational Attribute)”

UML FElement: Generalization relationship be-
tween enumerations

Comment: New.

6.12. Rule 12

SUMO Element: contraryAttribute relation, e.g.
“(contraryAttribute Dirty Clean)”

UML Element: An OCL invariant defined in the
context of Entity class

Comment: New.

6.13. Rule 13

SUMO FElement: exhaustiveAttribute relation,
e.g. “(exhaustiveAttribute SexAttribute Female
Male)”

UML Element: Property isLeaf in the class rep-
resenting the attribute is set to true

Comment: New.

6.14. Rule 14

SUMO Element: subAttribute relation, e.g. “(sub-
Attribute Anthropologist Scientist)”

UML Element: A new enumeration data type
gathering all sub attributes (left parameter) of
the right parameter as literals; this new data
type inherits from the enumeration data type
representing the right parameter

Comment: New.

6.15. Rule 15

SUMO Element: successorAttribute relation,
e.g. “(successorAttribute StandardRoom Deluxe-
Room)”

UML Element: Tag definitions assigned to enu-
meration literals with pos tag set to the order
number of the attribute instance

Comment: New.

7. SUMO to UML Transformation
Example

The functionality of SUMO to UML translator

will be presented with the use of a simple exam-

ple. It aims in elaborating an initial version of
domain diagram based on Countries and Regions

ontology, and ontologies it is based upon (e.g.

Merge.kif, Mid-level-ontology.kif, Goverment.kif,

all downloaded on the 1lst January 2016) [8].

Fig. 9 shows a form which allows a user to select

interesting ontologies (ontology segments).
After file loading SumoChecker component

reports found bugs. SUMO sentences which are
the source of bugs are marked in red in the main
window. Examples of such bugs are presented
below:
Entity: DeviceNormal has two different infor-
mal documentations.

— Relation: defendant 1st domain: Cogni-
tiveAgent doesn’t fit parent: patient domain:
Process.

— Type: PostalAddressText lacks its documen-
tation.

Let assume that a user wants to propose a do-
main model to represent the structure of geo-

Automatic SUMO to UML translation

63

|£] SUMO Translator

e e

Eelect ontologies to load:

[¥] CountriesAndRegions kit
[Geography kif

[¥] Government.kif

[Merge. lf

Fl MidHevel-ontology. kif

| Select Al

I

Load

Figure 9. SUMO to UML translator — the initial form

graphic areas, their types, inclusions, as well as
capital cities for particular geopolitical regions.
He needs to find among SUMO notions those to
be translated to the UML, and to mark them. The
tool helps in identification of interesting concepts
by providing all sentences in which a given con-
cept is used, grouped by their type; for example,
for a relation the documentation sentence is pre-
sented first, next relation domains, sub-relations,
and relation instances (see Fig. 10).

Within the main window, a user can search or
browse SUMO content. On the left there is a list
of all entities found in selected SUMO ontologies.
Because the number of entities is huge, the view
could be limited only to entities whose name start
with specific letter. On the right, there is a set of
sentences the entity is part of. There is also Rule
tab containing axioms referring selected entity.

By a double click a user can select either
entities or sentences to be translated to UML.
Selected elements are marked in yellow — see Fig.
10. If a relation is selected, its domains are auto-
matically selected as well. For example, among
relationships in which City class is involved, cap-
1talCity was chosen to be translated into UML.
When the selection proces is completed, the user
runs translation process.

Fig. 11 presents the result of transformation
done by the translator. The resulting UML class
diagram has a form of a tree with properties set
for classes and associations.

For readability purposes the generated file
was rewritten in Visual Paradigm tool and pre-

sented as a graph in Fig. 12. Examples of elements
that can’t be visualized (e.g. subset constraint
for association ends) are given in comments.

As one can observe, the resulting class dia-
gram may consist of more than one sub-graphs —
see the located association between Object and
Physical classes. There could be following reasons
for that:

The user didn’t mark SUMO sentences de-
scribing inheritance hierarchy to be trans-
formed; e.g. GeographicArea is an indirect
child of Object and Physical what means, that
— in this context — located relation can happen
between GeographicAreas.

Some knowledge is contained in qualified sen-
tences which are not processed at that mo-
ment in any way.

SUMO ontologies form a set. The upper layer
is included in Merge.kif file. At that level, many
basic relations are defined, including located, so it
is why their domains are top classes from SUMO
class hierarchy (Physical and Object for located
relation). When considering a specific domain, e.g.
countries and regions, one deals with subclasses
of the top level classes; the instances of these
subclasses can be used in all places where their
parents are allowed. It means that an interesting
relation could be defined between classes being far
away (in the inheritance hierarchy) from classes
of the considered domain. To solve this problem,
the translation tool can add indirect inheritance
relationships between classes presented on the
class diagram.

64

Bogumita Hnatkowska

| £| SUMO Translator

Term: :geographicSubregion

'

[Jloa oo Je Jlo e |& Jus

lon Jlos Joo

o i i

s o

| BT

| |
|

S Y e

=
Jl Capillary - : Relation instances | RL.riesl

(]

| (documentation capitalCity EnglishLanguage “(&%ecapitalCity *CITY ?REGION]) means thatt -
{domain capitalCity 1 City) Government.kif |EI
(domain capitalCity 2 GeopoliticalArea) Government. kif T
(subrelation capitalCity administrativeCenter) Government. kif

(instance capitalCity BinaryPredicate) Gowernment.kif |
(capitalCity LondonUnitedkingdom Unitedkingdom) CountriesAndRegions. kif |
= | l[{capitalCity BerlinGermany Germany) CountriesAndRegions.kif

b 4 | (111

| F

[Return][Translate to UML I

Figure 10. SUMO to UML translator — the main window

4 |#) platform:fresource/SUMOToUML Translater?/gen/Countries.uml

4 = «<Model> Testi2_Countries.uml
s E < (Class> StateOrProvince
a4 = «Class> City

A «Generalization> LandArea

» [<Property> region: Geopolitical&res [0..%]

4 & «Class> Nation

=) <Comment> documentation:" The broadest 8% Geopoliticalfrea, 1.e. &%MNations are ..

A <Generalization> Geopoliticalhrea

/’ < Generalization> LandArea

. & «Class> Geographicirea
s E «Class» LandArea
. & <Class» ShoreArea
. = =Class» Continent
» = <Class> Island
. = «Class» GeopoliticalArea
s E <Class> Courty
» /" «Mgsociation> geographicSubregion
s E < Class» Physical
: = <Class> Object

/" <Association> located
>/ <Mssociation> capital City

Figure 11. SUMO to UML transformation example (automatic translation)

The domain diagram resulting from transfor-
mation process is a starting point to understand
a given domain. It is consistent with domain
ontology by construction, but it can lack some
important information. The quality of the dia-
gram strongly depends on the initial step per-
formed by a system analyst — identification of
SUMO notions to be translated. That problem
is addressed in [29].

8. Problems to be Addressed

8.1. Meta-classes and Meta-relations

SUMO, similarly to UML, is described in SUMO
itself. Some elements of SUMO play a role of
meta-classes, i.e. classes the instances of which
are functions or relations; examples include Bina-
ryPredicate, IrrefleziveRelation. Meta-classes are
not directly translated to UML class diagram, but

Automatic SUMO to UML translation

65

Subsettet property: =Property= geographicSubregion
obif. Physicall0..” Subsctiet property: <Property= obj2: Object[0.. %
+ part
GeographicArea | + _}-~
wdfu:lle documentation”(&%captalCy ?CITY PREGION) means that the
& &% Ciy ?CMY is the capital of the &%Geopolitical&rea PREGION ™
i capital ity

. | =

GeopoliticalArea LandArea
1
i Ja NN
. city
StateOrPravines Shorefrea Cantinant Islamd Caunty City
Object eated OB 1 Physical
abj2 :
Nation

Figure 12. SUMO to UML transformation example — results presented as a class diagram

they define important properties of other trans-
formed elements, e.g. the arity of relations or
functions. At that moment, arity is transformed
only. Another relation properties, e.g. “reflexivity”
constraint is not translated, but that could be
done with the use of OCL.

Meta-relations are those relations that de-
scribe relationships between 2 or more classes or
2 or more relations; examples include: subclass,
partition, disjoint for classes, and subrelation,
disjointRelation for relations. In the current ver-
sion of the tool most of them are addressed (see
Sections 4-6 for details) but still some other can
be taken into consideration, e.g. disjointRelation.

8.2. Axioms

SUMO axioms introduce constraints on ontology
instances. The example below stays that every
instance of EuropeanCity must be part of Europe.

(=>

(instance ?CITY EuropeanCity)

(part ?CITY Europe)

)

The other example stays that if an instance
belongs to Virginlslands it must be also an in-
stance of Island.

(=
(member ?ISLAND VirginIslands)
(instance ?ISLAND Island)

)

Some of such axioms could be expressed di-
rectly in UML (e.g. with the use of composition
relationship), some other could be translated into
OCL. The current version of the SUMO to UML
transformation tool allows reading axioms but
they can not be selected for transformation.

9. Summary

The paper presents an approach to SUMO-UML
translation. The translation is defined as a set of
transformation rules between SUMO and UML
meta-models.

The SUMO meta-model was proposed for that
purpose. The initial set of transformation rules,
identified and described in [15-17], was revised
and extended with new rules e.g. for SUMO at-
tributes and their relations.

The results of the tool applications are promis-
ing. The obtained domain class diagrams are con-
sistent, correct and complete to the level to which
the input ontology has these features. These are

66

Bogumita Hnatkowska

the main benefits the tool can bring to potential
users. Business expert or business analyst can
use the tool to find out interesting notions, select
them, and translate to a UML class diagram with
a set of OCL constraints with one click. The user
is warned about incompleteness, and inconsis-
tencies found in the original files. He or she can
experiment with transformation results, selecting
new elements or un-selecting previously selected.
The obtained UML model can be re-factored, and
next transformed to other representations, e.g.
programming languages, database schemas, etc.

The tool to be effectively used needs a quali-
fied business analyst or business expert to select
for transformation all interesting SUMO notions.
Otherwise, the resulting domain model will be
incomplete. To address this matter a research
group, the author of this paper belongs to, is try-
ing to propose an algorithm to extract knowledge
from ontology on the basis of limited input only
— see [29).

A kind of a side effect of the tool implemen-
tation is the definition of static consistency rules
which allow detecting inconsistencies in existing
ontologies. In the future, that module can be
used as a part of ontology editor.

The next release of the tool will address
problems presented in Section 8. Additionally,
the transformations at the instance level, rep-
resented by object diagrams, are planned to be
implemented. It seems to be especially impor-
tant because in domain ontologies more than
half of sentences represent instances and links
among them, e.g. “(instance Mauritius Nation)
(geographicSubregion Mayotte SouthernAfrica)”
for CountiresAndRegions.kif.

References

[1] K. Bittner and I. Spencer, Use Case Modeling.
Addison-Wesley Professional, 2002.

[2] I. Jacobson, G. Booch, and J. Rumbaugh,
The Unified Software development process.
Addison-Wesley Professional, 1999.

[3] D. Zowghi and V. Gervasi, “The three cs of
requirements: Consistency, completeness, and
correctness,” in Proceedings of 8th International
Workshop on Requirements Engineering: Foun-
dation for Software Quality, (REFSQ 02, 2002,
pp. 155-164.

[4] P. Mohagheghi, V. Dehlen, and T. Neple, “Def-
initions and approaches to model quality in
model-based software development — a review of
literature,” Information and Software Technol-
ogy, Vol. 51, No. 12, Dec. 2009, pp. 1646-1669.

[5] W. Hesse, “Ontologies in the software engineering
process,” in EAI 2005: Enterprise Application In-
tegration — Proceedings of the 2nd GI-Workshop
on Enterprise Application Integration, R. Lenz,
U. Hasenkamp, W. Hasselbring, and M. Reichert,
Eds., 2005.

[6] H.J. Happel and S. Seedorf, “Applications of
ontologies in software engineering,” in Proc. of
Workshop on Sematic Web Enabled Software En-
gineering"(SWESE) on the ISWC, 2006, pp. 5-9.

[7] F. Gailly and G. Poels, “Conceptual model-
ing using domain ontologies: Improving the
domain- specific quality of conceptual schemas,”
in Proceedings of the 10th Workshop on
Domain-Specific Modeling, ser. DSM ’10. New
York, NY, USA: ACM, 2010, pp. 18:1-18:6.

[8] Suggested Upper Merged Ontology,
access: 10 Jan 2016. [Online].
//www.ontologyportal.org

[9] A.Pease, Ontology: A practical Guide. Articulate
Software Press, 2011.

[10] Sigma, last access: 10 Jan 2016. [Online]. http:
/ /sourceforge.net /projects/sigmakee /files/

[11] I. Istochnick, OWL2UML, last access: 10 Jan
2016. [Online|. http://protegewiki.stanford.edu/
wiki/OWL2UML

[12] F. Suchanek, “Ontological reasoning for natural
language understanding,” Master Thesis in Com-
puter Science, Saarland University, Germany,
March 2005.

[13] Semantics of Business Vocabulary and Business
Rules (SBVR). Version 1.3, OMG, (2015, May).
[Online]. http://www.omg.org/spec/SBVR/1.3/

[14] A. Marinos, S. Moschoyiannis, and P.J. Krause,
“An SBVR to SQL compiler,” in Proceedings of
the RuleML-2010 Challenge, at the 4th Interna-
tional Web Rule Symposium, 2010.

[15] B. Hnatkowska, Z. Huzar, I. Dubielewicz, and
L. Tuzinkiewicz, “Problems of SUMO-like ontol-
ogy usage in domain modelling,” in Intelligent
Information and Database Systems, ser. Lecture
Notes in Computer Science, N. Nguyen, B. At-
tachoo, B. Trawinski, and K. Somboonviwat,
Eds. Springer International Publishing, 2014,
Vol. 8397, pp. 352-363.

[16] I. Dubielewicz, B. Hnatkowska, Z. Huzar, and
L. Tuzinkiewicz, “Domain modelling in the con-
text of ontology,” Foundations of Computing and
Decision Sciences, Vol. Volume 40, No. 1, 2015,
pp- 3-15.

last
http:

http://www.ontologyportal.org
http://www.ontologyportal.org
http://sourceforge.net/projects/sigmakee/files/
http://sourceforge.net/projects/sigmakee/files/
http://protegewiki.stanford.edu/wiki/OWL2UML
http://protegewiki.stanford.edu/wiki/OWL2UML
http://www.omg.org/spec/SBVR/1.3/

Automatic SUMO to UML translation

67

[17]

[18]

[19]

[20]

[21]

[22]

23]

B. Hnatkowska, Z. Huzar, I. Dubielewicz, and
L. Tuzinkiewicz, “Development of domain model
based on SUMO ontology,” in Theory and Engi-
neering of Complex Systems and Dependability,
ser. Advances in Intelligent Systems and Com-
puting, W. Zamojski, J. Mazurkiewicz, J. Sugier,
T. Walkowiak, and J. Kacprzyk, Eds. Springer
International Publishing, 2015, Vol. 365, pp.
163-173.

D. Gasevic, D. Djuric, V. Devedzic, and V. Dam-
janovi, “Converting UML to OWL ontologies,”
in Proceedings of the 13th International World
Wide Web Conference on Alternate Track Papers
&Amp; Posters, ser. WWW Alt. '04. New York,
NY, USA: ACM, 2004, pp. 488—489.

J. Zedlitz, J. Jorke, and N. Luttenberger,
Knowledge Technology. Berlin, Heidelberg:
Springer-Verlag, 2012, ch. From UML to OWL
2, pp. 154-163.

B. Hnatkowska, From requirements to software:
research and practice. Warszawa: Polish Infor-
mation Processing Society, 2015, ch. Towards
automatic Sumo to UML translation, pp. 87-99.
ANTLR, last access: 10 Jan 2016. [Online]|.
http://www.antlr.org/

A. Pease, Standard upper ontology knowl-
edge interchange format, (2009, Jun).
[Online]. http://sigmakee.cvs.sourceforge.net/
viewvc/sigmakee /sigma/suo-kif.pdf

S. Schulz, “System description: E 1.8, in

24]

[25]

[26]

27]

(28]

29]

Logic for Programming, Artificial Intelligence,
and Reasoning, ser. Lecture Notes in Com-
puter Science, K. McMillan, A. Middeldorp,
and A. Voronkov, Eds. Berlin Heidelberg:
Springer-Verlag, 2013, Vol. 8312, pp. 735-743.

Unified Modeling Language. Version 2.5,
OMG, (2013, September). [Online]. http:
//www.omg.org/spec/UML/

Papyrus modeling environment, last access:
10 Jan 2016. [Online]. http://www.eclipse.org/
papyrus/

UML profile diagrams, last access: 28 May 2016.
[Online|. http://www.uml-diagrams.org/profile-
diagrams.html

D. Djuri¢, D. Gasevié¢, V. Devedzic, and V. Dam-
janovié, Proceedings of the Web Engineering:
4th International Conference. Berlin, Heidelberg:
Springer-Verlag, 2004, ch. UML Profile for OWL,
pp. 607-608.

Object Constraint Language. Version 2.4,
OMG, (2014, February). [Online]. http:
//www.omg.org/spec/OCL/2.4/

B. Hnatkowska, Z. Huzar, L. Tuzinkiewicz,
and I. Dubielewicz, Intelligent Information
and Database Systems, ser. Lecture Notes
in Computer Science. Berlin, Heidelberg:
Springer-Verlag, 2016, Vol. 6592, ch. Conceptual
Modeling Using Knowledge of Domain Ontology,
pp. 554-564.

http://www.antlr.org/
http://sigmakee.cvs.sourceforge.net/viewvc/sigmakee/sigma/suo-kif.pdf
http://sigmakee.cvs.sourceforge.net/viewvc/sigmakee/sigma/suo-kif.pdf
http://www.omg.org/spec/UML/
http://www.omg.org/spec/UML/
http://www.eclipse.org/papyrus/
http://www.eclipse.org/papyrus/
http://www.uml-diagrams.org/profile-diagrams.html
http://www.uml-diagrams.org/profile-diagrams.html
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/OCL/2.4/

	Introduction
	Related Works
	Meta-model of SUMO notions
	Architecture of SUMO to UML Translator
	Translation of SUMO Attributes and Their Relations to UML
	Attributes and Attributes' Relations in SUMO
	Mappings of SUMO Attributes and Attributes' Relations to UML
	Mappings of SUMO Attributes
	UML Profile for Modeling SUMO Attributes
	Mappings of Attributes' Relations

	Examples of Transformation Rules
	Rule 1
	Rule 2
	Rule 3
	Rule 4
	Rule 5
	Rule 6
	Rule 7
	Rule 8
	Rule 9
	Rule 10
	Rule 11
	Rule 12
	Rule 13
	Rule 14
	Rule 15

	SUMO to UML Transformation Example
	Problems to be Addressed
	Meta-classes and Meta-relations
	Axioms

	Summary
	References

