PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Usefulness of subtraction thermography in the evaluation of blood vessels and lymphatic vessels in the dental pulp

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Caries or iatrogenic thermal trauma of the teeth have a significant impact on the dental pulp structure connected with stimulation of angiogenesis and lymphangiogenesis. Therefore, the aim of the study was to identify the difference in the rate of heat dissipation by vessels present in the dental pulp. Methods: Freshly extracted healthy (n = 10) and carious (n = 14) molars and premolars were cut on a diamond saw and subjected to active thermographic examination and then subjected to lymphoscintigraphy and X-ray examination. The tooth samples were heated uniformly to 40 ± 0.5 °C. A thermal imaging camera with a resolution of 640 × 320 pixels was used to record the sequence of thermograms during free cooling. Due to the different volume of teeth and different surface conditions of the examined teeth (color, roughness) and the related different radiation emissivity, the changes in the temperature (ΔT) of the tooth cross-section surface were analyzed using the subtractive method within 120 seconds from the switching off of the thermal impulse (heating). Results: Thermographic examination of healthy and cariously changed teeth revealed areas of increased tissue fluid flow combined with heat release, which may indirectly indicate the existence of vessels in these areas. On a thermal imaging camera, variations in the rate of heating or cooling across several cross-sectional sections of the same tooth indicate changes in the dental structure’s density. Conclusions: In caries-affected teeth, intracanalicular fluid flows are different than those of healthy teeth. Therefore, it can be concluded that the pulp vessels enabling circulation of body fluids – blood and lymphatic – increases with the intensity of inflammation. Maintaining the homeostasis of the dental pulp depends heavily on the circulation of bodily fluids within the dental organ.
Rocznik
Strony
143--151
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
  • Department of Dental Surgery, Wroclaw Medical University, Wrocław, Poland
  • Pre-Clinical Research Centre, Wroclaw Medical University, Wrocław, Poland
  • Department of Histology and Embryology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
  • Pre-Clinical Research Centre, Wroclaw Medical University, Wrocław, Poland
  • Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Wrocław, Poland
  • Department of Logistics and Transport Systems, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
autor
  • Division of Biomedical Engineering and Experimental Mechanics, Wroclaw University of Technology, Wrocław, Poland
  • Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Wrocław, Poland
Bibliografia
  • [1] ABOUSHADY M.A., TALAAT W., HAMDOON Z., M ELSHAZLY T., RAGY N., BOURAUEL C., TALAAT S., Thermography as a nonionizing quantitative tool for diagnosing periapical inflammatory lesions, BMC Oral Health. 2021, May 13, 21 (1), 260.
  • [2] AKSAKALLI S., DEMIR A., SELEK M., TASDEMIR S., Temperature increase during orthodontic bonding with different curing units using an infrared camera, Acta Odontol. Scand., 2014, 72 (1), 36–41.
  • [3] BAGAVATHIAPPAN S., SARAVANAN T., PHILIP J., JAYAKUMAR T., RAJ B., KARUNANITHI R., MR PANICKER T., KORATH P., JAGADEESAN K., Investigation of peripheral vascular disorders using thermal imaging, Br. J. Diabetes Vasc. Dis., 2008, 8 (2), 102–104.
  • [4] CANAVAN D., GRATT B.M., Electronic thermography for the assessment of mild and moderate temporomandibular joint dysfunction, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 1995, 79 (6), 778–786.
  • [5] CHÁVEZ DE PAZ L.E., BERGENHOLTZ G., SVENSÄTER G., The effects of antimicrobials on endodontic biofilm bacteria, J. Endod., 2010, 36 (1), 70–77.
  • [6] CHÁVEZ DE PAZ L.E., ZAPATA R.O., Challenges for root canal irrigation: microbial biofilms and root canal anatomy, Endo. Ept., 2019, 91–100.
  • [7] CHRISTENSEN J., MATZEN L.H., VAETH M., SCHOU S., WENZEL A., Thermography as a quantitative imaging method for assessing postoperative inflammation, Dentomaxillofac Radiol., 2012, 41 (6), 494–499.
  • [8] COUVE E., OSORIO R., SCHMACHTENBERG O., The amazing odontoblast: activity, autophagy, and aging, J. Dent. Res., 2013, 92 (9), 765–772.
  • [9] CUMMINGS M., BIAGIONI P., LAMEY P.J., BURDEN D.J., Thermal image analysis of electrothermal debonding of ceramic brackets: an in vitro study, Eur. J. Orthod., 1999, 21 (2), 111–118.
  • [10] DINARELLO C.A., Infection, fever, and exogenous and endogenous pyrogens: some concepts have changed, J. Endotoxin. Res., 2004, 10 (4), 201–222.
  • [11] DURAND S.H., FLACHER V., ROMÉAS A., CARROUEL F., COLOMB E., VINCENT C., MAGLOIRE H., COUBLE M.L., BLEICHER F., STAQUET M.J., LEBECQUE S., FARGES J.C., Lipoteichoic acid increases TLR and functional chemokine expression while reducing dentin formation in in vitro differentiated human odontoblasts, J. Immunol., 2006, 1, 176 (5), 2880–2887.
  • [12] EL-KEBIR H., RAN J., LEE Y., CHAMORRO L.P., OSTOJA-STARZEWSKI M., BERLIN R., AGUILUZ CORNEJO G.M., BENEDETTI E., GIULIANOTTI P.C., BENTSMAN J., Minimally Invasive Live Tissue High-fidelity Thermophysical Modeling using Real-time Thermography, ArXiv., 2023, 23, arXiv: 2301.09733.
  • [13] ENDO T., KOMATSUZAKI A., MIYAGAWA Y., KAMODA T., GOTO S., KOIDE K., MIZUTANI M., Thermographic assessment of facial temperature in patients undergoing orthognathic surgery, J. Oral Sci., 2019, 61 (2), 321–326.
  • [14] FORTE A.J., BOCZAR D., HUAYLLANI M.T., LU X., CIUDAD P., Lymphoscintigraphy for Evaluation of Lymphedema Treatment: A Systematic Review, Cureus., 2019, 12, 11 (12), e6363.
  • [15] GALLER K.M., WEBER M., KORKMAZ Y., WIDBILLER M., FEUERER M., Inflammatory Response Mechanisms of the Dentine-Pulp Complex and the Periapical Tissues, Int. J. Mol. Sci., 2021, 2, 22 (3), 1480.
  • [16] GRATT B.M., GRAFF-RADFORD S.B., SHETTY V., SOLBERG W.K., SICKLES E.A., A 6-year clinical assessment of electronic faUsefulness of subtraction thermography in the evaluation of blood vessels and lymphatic vessels in the dental pulp 151 cial thermography, Dentomaxillofac. Radiol., 1996, 25 (5), 247–255.
  • [17] GRATT B.M., SICKLES E.A., SHETTY V., Thermography for the clinical assessment of inferior alveolar nerve deficit: a pilot study, J. Orofac. Pain., 1994, 8 (4), 369–374.
  • [18] HADDAD D.S., BRIOSCHI M.L., ARITA E.S., Thermographic and clinical correlation of myofascial trigger points in the masticatory muscles, Dentomaxillofac. Radiol., 2012, 41 (8), 621–629.
  • [19] HAHN C.L., LIEWEHR F.R., Update on the adaptive immune responses of the dental pulp, J. Endod., 2007, 33 (7), 773–781.
  • [20] IOSIF L., MURARIU-MĂGUREANU C., PREOTEASA E., BĂRBÎNŢĂ-PĂTRAŞCU M.E., PREOTEASA C.T., Infrared radiation in dentistry; measuring heat emission through passive method of thermography, Rom. J. Phys., 2021, 66, 704, 1–15.
  • [21] JAFARZADEH H., UDOYE C.I., KINOSHITA J., The application of tooth temperature measurement in endodontic diagnosis: a review, J. Endod., 2008, 34 (12), 1435–1440.
  • [22] JAYARAJ A., JAYAKRISHNAN, SATISH S.V., NILLAN SHETTY K., RAI R., Recent Advances in Endodontics Exploring the Trends in Diagnosis, Int. J. Innov. Res. Sci. Eng. Technol., 2020, 5 (1), 219–222.
  • [23] KASPRZYK-KUCEWICZ T., CHOLEWKA A., BAŁAMUT K., KOWNACKI P., KASZUBA N., KASZUBA M., STANEK A., SIEROŃ K., STRANSKY J., PASZ A., MORAWIEC T., The applications of infrared thermography in surgical removal of retained teeth effects assessment, J. Therm. Anal. Calorim, 144, 2021, 139–144.
  • [24] KASPRZYK-KUCEWICZ T., SZURKO A., STANEK A., SIEROŃ K., MORAWIEC T., CHOLEWKA A., Usefulness in Developing an Optimal Training Program and Distinguishing between Performance Levels of the Athlete’s Body by Using of Thermal Imaging, Int. J. Environ. Res. Public Health, 2020, 6, 17 (16), 5698.
  • [25] KASZUBA N., KASPRZYK-KUCEWICZ T., BAŁAMUT K., MORAWIEC T., STANEK A., WZIĄTEK-KUCZMIK D., CHOLEWKA A., May thermal imaging be useful in the assessment of dental anaesthesia? Preliminary study, J. Therm. Anal. Calorim, 2022, 147, 6745–6753.
  • [26] KOSIOR P., KLIMAS S., NIKODEM A., WOLICKA J., DIAKOWSKA D., WATRAS A., WIGLUSZ R.J., DOBRZYŃSKI M., An in vitro examination of fluoride ions release from selected materials – resin-modified glass-ionomer cement (Vitremer) and nanohybrid composite material (Tetric EvoCeram), Acta Bioeng. Biomech., 2023, 25 (1), 101–115.
  • [27] KRAMER E.L., Lymphoscintigraphy: defining a clinical role, Lymphat. Res. Biol., 2004, 2 (1), 32–37.
  • [28] LAHIRI B.B., BAGAVATHIAPPAN S., JAYAKUMAR T., PHILIP J., Medical applications of infrared thermography: A review, Infrared Phys. Technol., 2012, 55 (4), 221–235.
  • [29] LARSEN T., Susceptibility of Porphyromonas gingivalis in biofilms to amoxicillin, doxycycline and metronidazole, Oral Microbiol. Immunol., 2002, 17 (5), 267–271.
  • [30] LAU X.E., LIU X., CHUA H., WANG W.J., DIAS M., CHOI J.J.E., Heat generated during dental treatments affecting intrapulpal temperature: a review, Clin. Oral Investig., 2023, 27 (5), 2277–2297.
  • [31] MENDES S., MENDES J., MOREIRA A., PAIS CLEMENTE M., VASCONCELOS M., Thermographic assessment of vital and non-vital anterior teeth: A comparative study, Infrared Phys. Technol., 2020, 106, 103232.
  • [32] NASUTION A.I., PANKOV M.N., The Advantage and Basic Approach of Infrared Thermography in Dentistry, J. Int. Dent. Med. Res., 2020, 13 (2), 731–737.
  • [33] PARK J.Y., PILLINGER M.H., ABRAMSON S.B., Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases, Clin. Immunol., 2006, 119 (3), 229–240.
  • [34] PIATTELLI A., RUBINI C., FIORONI M., TRIPODI D., STROCCHI R., Transforming growth factor-beta 1 (TGF-beta 1) expression in normal healthy pulps and in those with irreversible pulpitis, Int. Endod. J., 2004, 37 (2), 114–119.
  • [35] RAMIREZ-GARCIA LUNA J.L., BARTLETT R., ARRIAGA-CABALLERO J.E., FRASER R.D.J., SAIKO G., Infrared Thermography in Wound Care, Surgery, and Sports Medicine: A Review, Front. Physiol., 2022, 3, 13, 838528.
  • [36] RANZENBERGER L.R., PAI R.B., Lymphoscintigraphy, In: StatPearls. StatPearls Publishing, Treasure Island (FL), 2023, PMID: 33085360.
  • [37] RICUCCI D., LOGHIN S., SIQUEIRA J.F. Jr., Correlation between clinical and histologic pulp diagnoses, J. Endod., 2014, 40 (12), 1932–1939.
  • [38] RING E.F., AMMER K., Infrared thermal imaging in medicine, Physiol. Meas., 2012, 33 (3), R33–46.
  • [39] SHIBA H., MOURI Y., KOMATSUZAWA H., OUHARA K., TAKEDA K., SUGAI M., KINANE D.F., KURIHARA H., Macrophage inflammatory protein-3alpha and beta-defensin-2 stimulate dentin sialophosphoprotein gene expression in human pulp cells, Biochem. Biophys. Res. Commun., 2003, 11, 306 (4), 867–871.
  • [40] SINGH D., SINGH A.K., Role of image thermography in early breast cancer detection – Past, present and future, Comput. Methods Programs Biomed., 2020, 183, 105074.
  • [41] SLOAN A.J., PERRY H., MATTHEWS J.B., SMITH A.J., Transforming growth factor-beta isoform expression in mature human healthy and carious molar teeth, Histochem. J., 2000, 32 (4), 247–252.
  • [42] SMITH E., DICKSON M., EVANS A.L., SMITH D., MURRAY C.A., An evaluation of the use of tooth temperature to assess human pulp vitality, Int. Endod. J., 2004, 37 (6), 374–380.
  • [43] SOORI A., KOWSARY F., KASRAEI S., Experimental estimation of the emissivity of human enamel and dentin, Infrared Phys. Technol., 2020, 106, 103234.
  • [44] STRABURZYŃSKA-LUPA A., KORMAN P., ŚLIWICKA E., KRYŚCIAK J., OGURKOWSKA M.B., The use of thermal imaging for monitoring the training progress of professional male sweep rowers, Sci. Rep., 2022, 3, 12 (1), 16507.
  • [45] SZTYLER K., PAJĄCZKOWSKA M., NOWICKA J., RUSAK A., CHODACZEK G., NIKODEM A., WIGLUSZ R.J., WATRAS A., DOBRZYŃSKI M., Evaluation of the microbial, cytotoxic and physico-chemical properties of the stainless steel crowns used in pediatric dentistry, Acta Bioeng. Biomech., 2022, 24 (4), 127–137.
  • [46] SZYMONOWICZ M., RUSAK A., PAJĄCZKOWSKA M., NOWICKA J., WIŚNIEWSKA K., ŻYWICKA B., RYBAK Z., DOBRZYŃSKI M., Assessment of cytotoxic and antimicrobial activity of selected gingival haemostatic agents – in vitro study, Acta Bioeng. Biomech., 2020, 22 (3), 185–198.
  • [47] TABATABAEI N., MANDELIS A., AMAECHI B.T., Thermophotonic lock-in imaging of early demineralized and carious lesions in human teeth, J. Biomed. Opt., 2011, 16 (7), 071402.
  • [48] YOSHIMURA A., LIEN E., INGALLS R.R., TUOMANEN E., DZIARSKI R., GOLENBOCK D., Cutting edge: recognition of Grampositive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2, J. Immunol., 1999, 1, 163 (1), 1–5.
  • [49] ZHAN C., HUANG M., YANG X., HOU J., Dental nerves: a neglected mediator of pulpitis, Int. Endod. J., 2021, 54 (1), 85–989.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f55ee7db-bfa5-40cc-8462-9226de103731
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.